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Purpose
Because programming has become an essential component of engineering, medicine, media, business, 
finance, and many other fields, it is important for engineers and practitioners to have a basic founda-
tion in programming to be competitive. This book introduces programming to students from a wide 
range of backgrounds and gives them programming and mathematical tools that will be useful to them 
throughout their careers.

For the most part, this book follows the standard material taught at the University of California, 
Berkeley, in the class E7: Introduction to computer programming for scientists and engineers. This 
class is taken by most engineering freshmen in the College of Engineering and by undergraduate stu-
dents from other disciplines, including physics, biology, and cognitive science. The course has two 
fundamental goals:

•	 	Teach	MATLAB	programming	to	engineering	students	who	do	not	have	prior	exposure	to	
programming.

•	 	Introduce	a	variety	of	numerical	analysis	tools	that	are	useful	for	solving	engineering	problems.

These two goals are reflected in the two parts of this book:

•	 Introduction	to	Programming	for	Engineers
•	 Introduction	to	Numerical	Methods

Because	this	book	covers	such	a	wide	range	of	topics,	no	topic	is	covered	in	great	depth.	In	fact,	
each chapter is designed to be covered in at most two lecture hours, even though there are entire 
semester courses dedicated to these same chapters. Rather than depth, this book is intended to give 
students a wide breadth of programming knowledge and mathematical vocabulary on which they 
can	expand.

We believe that just like learning a new foreign language, learning to program can be fun and illu-
minating. We hope that as you journey through this book, you will agree.

Prerequisites
This book is designed to introduce programming and numerical methods to students who have abso-
lutely no	prior	experience	with	programming,	which	we	hope	is	reflected	in	the	pace,	tone,	and	content	
of	 the	 text.	 For	 the	 purpose	 of	 programming,	 we	 assume	 the	 reader	 has	 the	 following	 prerequisite	
knowledge:

•	 Understanding	of	the	computer	monitor	and	keyboard/mouse	input	devices
•	 	Understanding	of	the	folder	structure	used	to	store	files	in	most	operating	systems

Preface
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For	the	mathematical	portions	of	the	text,	we	assume	the	reader	has	the	following	prerequisite	
knowledge:

•	 High	school	level	algebra	and	trigonometry
•	 Introductory,	college-level	calculus

That’s	it!	Anything	in	the	text	that	assumes	more	than	this	is	our	mistake,	and	we	apologize	in	advance	
for any instances that might pop up.

Organization
Part	I	teaches	the	fundamental	concepts	of	programming.	Chapter	1	introduces	the	reader	to	MATLAB	and	
MATLAB’s	basic	interface.	Chapters	2	through	6	teach	the	fundamentals	of	programming.	Proficiency	in	
the material from these chapters will allow you to program almost anything you imagine. Chapter 7 provides 
theory	that	characterizes	computer	programs	based	on	how	fast	they	run,	and	Chapter	8	gives	insights	into	
how	computers	represent	numbers	and	their	effect	on	arithmetic.	Chapter	9	explains	how	to	store	data	in	the	
long	term	and	how	to	make	results	from	MATLAB	useful	outside	of	MATLAB	(i.e.,	for	other	programs).	
Chapter	10	provides	useful	tips	on	good	programming	practices	to	limit	mistakes	from	popping	up	in	your	
code,	and	tells	you	how	to	find	them	when	they	do.	Finally,	Chapter	11	introduces	MATLAB’s	graphical	
features	that	allow	you	to	produce	plots	and	charts,	which	is	arguably	one	of	MATLAB’s	most	useful	fea-
tures for engineers.

Part	2	gives	an	overview	of	a	variety	of	numerical	methods	that	are	useful	for	engineers.	Chapter	12	
gives	a	crash	course	in	linear	algebra.	Although	theoretical	in	nature,	linear	algebra	is	the	single	most	
critical	concept	for	understanding	many	advanced	engineering	topics.	Chapter	13	is	about	regression,	a	
method	of	fitting	theoretical	models	to	observed	data.	Chapter	14	is	about	inferring	the	value	of	a	func-
tion	between	observed	data	points,	a	framework	known	as	interpolation.	Chapter	15	introduces	the	idea	
of	approximating	functions	with	sums	of	polynomials,	which	can	be	useful	for	simplifying	complicated	
functions.	Chapter	16	teaches	two	algorithms	for	finding	roots	of	functions.	That	is,	find	an	x such that 
f(x)	=	0,	where	f	is	a	function.	Chapters	17	and	18	cover	methods	of	approximating	the	derivative	and	
integral	of	a	function,	respectively.	Finally,	Chapter	19	introduces	a	mathematical	model	type	called	
ordinary	differential	equations,	and	presents	several	methods	of	finding	solutions	to	them.

What’s Missing?
Since no prior programming knowledge is assumed for this book, it is important to state clearly what 
is not	taught	in	this	text.	All	the	programming	concepts	in	this	text	fall	under	a	style	of	programming	
called	Procedural	Programming,	which	basically	means	building	computer	programs	that	work	step	by	
step	to	complete	a	task.	This	is	a	fundamentally	different	approach	than	Object-Oriented	Programming,	
which	emphasizes	building	concepts	as	computational	objects	 that	help	programmers	keep	 track	of	
large projects.

Object-Oriented	Programming	is	most	effective	when	used	for	very	large	programming	projects,	
usually	projects	that	involve	multiple	programmers	working	together.	We	have	omitted	it	from	this	text	
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primarily	because	there	is	insufficient	time	in	a	single	semester	to	teach	Procedural	Program	well	and 
give	exercise	problems	of	a	size	and	scope	that	would	demonstrate	the	effectiveness	of	Object-Oriented	
Programming.	That	being	said,	Object-Oriented	Programming	is	a	very	powerful	programming	para-
digm,	and	we	hope	that	you	will	explore	it	in	the	future.

As	 suggested	earlier,	 this	 text	does	not	provide	mathematically	 rigorous	definitions	of	what	 the	
methods presented are or why they are effective. There are some mathematical derivations but no math-
ematical	proofs.	Our	primary	motivation	for	this	text	is	to	give	you	a	foundation	of	programming	and	
mathematical tools that you can use to solve problems. We leave rigor and depth to your future courses 
and	more	advanced	textbooks.

How to Read this Book
Learning	to	program	is	all	about	practice,	practice,	practice.	Just	like	learning	a	new	language,	there	is	
no	way	you	will	learn	to	program	well	without	engaging	with	the	material,	internalizing	it,	and	putting	
it into constant use.

As	you	go	through	the	text,	you	should	ideally	have	MATLAB	open	in	front	of	you,	ready	to	try	out	
any	and	all	of	the	numerous	examples	that	are	provided.	Go	slowly. Taking the time to really understand 
what	MATLAB	is	doing	in	every	example	will	pay	large	dividends	compared	to	‘‘powering	through”	
the	text	like	a	novel.

In	terms	of	the	text	itself,	Chapters	1	through	5	should	be	read	and	understood	first	since	they	cover	
the	fundamentals	of	programming.	Chapters	6	through	10	can	be	covered	in	any	order.	Chapter	11	on	
plotting	is	a	must-read	but	can	be	covered	any	time.	In	Part	II,	Chapter	12	should	be	read	first	since	
subsequent	chapters	rely	on	linear	algebraic	concepts.	The	remaining	chapters	can	be	read	in	any	order.	
However,	it	will	be	helpful	to	read	Chapters	17	and	18	before	Chapter	19.

Throughout	 the	 text,	 there	will	be	words	written	 in	boldface. When you encounter one of these 
words, you should take the time to commit the word to memory and understand its meaning in the 
context	of	the	material	being	presented.

To	keep	the	text	from	running	on,	we	punctuate	the	material	with	smaller	blocks.	Following	is	a	
description of each kind of block.

TRY IT!	This	is	the	most	common	block	in	the	text.	It	will	usually	have	a	short	description	of	a	
problem	and/or	an	activity.	We	strongly	recommend	that	you	actually	try	all	of	these	in	MATLAB.

TIP! This block gives some advice that we think will make programming easier for you. 
However,	 the	blocks	do	not	contain	any	new	material	 that	 is	essential	 for	understanding	 the	
key	concepts	of	the	text.

EXAMPLE:	These	sections	are	concrete	examples	of	new	concepts.	They	are	designed	to	help	you	
think	about	new	concepts.	However,	they	do	not	necessarily	need	to	be	tried.

WARNING!	Learning	to	program	can	have	many	pitfalls.	These	sections	contain	information	that	
will help you avoid confusion, building bad habits, or misunderstanding key concepts.

WHAT IS HAPPENING?	 These	 sections	 follow	 MATLAB	 in	 scrutinizing	 detail	 to	 help	 you	
understanding	what	goes	on	when	MATLAB	executes	programs.

CONSTRUCTION:	In	programming	there	are	standard	architectures	that	are	reserved	to	perform	
common and important tasks. These sections outline these architectures and how to use them.
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There are four sections to end every chapter. The Summary section gives a list of the main points 
of the chapter. These points should be intuitive to you by the end of the chapter. The Vocabulary sec-
tion	is	a	list	of	new	words	presented	in	the	chapter.	It	is	important	to	know	how	these	words	are	defined	
in	the	context	of	this	book	since	they	will	be	essential	for	learning	concepts	later.	The	Functions and 
Operators section lists new tools and functions introduced during the chapter that will be useful for 
your	programs	and	for	the	exercise	problems.	Be	sure	to	understand	what	these	tools	do	and	how	they	
are used. The Problems	section	gives	exercises	that	will	reinforce	concepts	from	the	chapter.	There	are	
five	types	of	exercise	problems	and	they	are	each	denoted	by	their	own	symbol:

The  symbol denotes a problem that you should work out on paper.

The  symbol denotes a problem that gives you something to think about.

The  symbol denotes a problem that you should try at the command prompt.

The  symbol denotes a problem for which you need to write a program.

The 	symbol	denotes	a	problem	that	requires	you	to	intentionally	generate	an	error.	

These	problems	are	designed	to	familiarize	you	with	common	mistakes	made	while	programming	so	
that	you	can	readily	fix	them.

As	one	final	note,	one	of	the	main	criticisms	of	MATLAB	is	that	there	are	too	many	ways	of	doing	
the	same	thing.	Although	at	first	this	can	seem	like	a	useful	feature,	it	can	make	learning	MATLAB	
confusing or overload you with possibilities when the task is actually straightforward. This book pres-
ents	a	single	way	of	performing	a	task	to	provide	structure	for	your	learning	experience	and	to	keep	you	
from	being	inundated	by	extraneous	information.	You	may	discover	solutions	that	differ	from	the	text’s	
solutions but solve the problem just the same or even better! We encourage you to find these alternative 
methods,	and	leave	it	up	to	experience	and	your	own	judgement	to	decide	which	way	is	better.

We hope you enjoy the book!

MATLAB Version
This	book	was	written	using	MATLAB	R2008a.	As	MATLAB	is	constantly	under	development,	some	
features	may	be	added,	removed,	or	changed	in	the	MATLAB	version	on	your	computer.
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CHAPTER

MATLAB® Basics

CHAPTER OUTLINE

1.1 Getting Started with the MATLAB® Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 MATLAB® as a Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Logical Expressions and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Motivation
This chapter gets you started with MATLAB, using it as a calculator. As you will see, MATLAB has
a large library of built-in mathematical functions that you can use to perform any operation available
on a scientific or graphing calculator. At the end of this chapter, you should be familiar with the
MATLAB environment, how to execute commands to MATLAB, and MATLAB’s basic mathematical
functionalities.

1.1 Getting Started with the MATLAB® Environment
Once MATLAB is installed on your computer, you should see a shortcut on the desktop that looks like

. Double-clicking the shortcut icon will open the MATLAB environment shown in Figure 1.1.
The MATLAB environment is a text-based visualization tool that allows you to interact with

MATLAB. The MATLAB environment consists of the current directory as well as four windows: the
command window, the current directory window, the workspace window, and the command history
window. They are shown in Figure 1.1.

The current directory is the folder in your computer where files will be saved and where the files
you will have direct access to are stored. You can change the current directory by clicking the down
arrow or the button with an ellipsis symbol (…). The current directory will be explained in greater detail
in Chapter 3 on Functions. The command window is the window in the MATLAB environment where
commands are executed and MATLAB’s responses are displayed. The command prompt is where you
can type your commands in the command window and is denoted by the symbol ». When you see this
symbol in the text or in examples, it means that the action is taking place at the command window. The
current directory window is the window in the MATLAB environment that lists all the files currently
An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00001-4
© 2015 Elsevier Inc. All rights reserved.
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FIGURE 1.1

The MATLAB environment.

stored in the current directory. The workspace window is the window in the MATLAB environment
that lists all the variables currently being used in the workspace. The details of the workspace will also
be explained in Chapter 3 on Functions. The command history window is the window in the MATLAB
environment that lists all the previous commands entered at the command prompt, which is helpful for
recalling work that was done in a previous session.

You can rearrange the size and shape of the windows by clicking and holding the mouse cursor on
the borders of the windows, and then dragging them to a location that suits you better. You can also
change the location of the windows by clicking and holding the mouse cursor on the window title bar,
and dragging it to a different location. If you wish to remove a window, click the X in the upper right
corner of the window. To put it back, click Desktop in the menu bar and then click the window you want.

TIP! You can change the background color as well as the font color and style to suit your personal
preference. The options can be changed in the File → Preferences menu in the upper left hand
corner of the MATLAB environment.

1.2 MATLAB® as a Calculator
We will introduce you to MATLAB by demonstrating features found in any standard graphing calculator.
An arithmetic operation is either addition, subtraction, multiplication, division, or powers between
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two numbers. An arithmetic operator is a symbol that MATLAB has reserved to mean one of the
aforementioned operations. These symbols are + for addition, − for subtraction, ∗ for multiplication,
/ for division, and ˆ for exponentiation.

We say an instruction or operation is executed when it is resolved by the computer. An instruction
is executed at the command prompt by typing it where you see the » symbol and then pressing Enter.

TRY IT! Compute the sum of 1 and 2.

An order of operations is a standard order of precedence that different operations have in relationship
to one another. MATLAB utilizes the same order of operations that you learned in grade school. Powers
are executed before multiplication and division, which are executed before addition and subtraction.
Parentheses, (), can also be used in MATLAB to supercede the standard order of operations.

TRY IT! Compute 3∗4
22+4/2

.

TIP! You may have noticed ans is the resulting value of the last operation executed. You can use
ans to break up complicated expressions into simpler commands.

TRY IT! Compute 3 divided by 4, then multiply the result by 2, and then raise the result to the 3rd
power.

MATLAB has many basic arithmetic functions like sin, cos, tan, asin, acos, atan,
exp, log, log10, and sqrt. The inputs to these mathematical functions are always placed inside
of parentheses that are connected to the function name. For trigonometric functions, it is useful to have
the value of π easily available. You can call this value at any time by typing » pi in the command
prompt. Note that the value of π is stored in MATLAB to 16 digits.
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TRY IT! Find the square root of 4.

TRY IT! Compute the sin
(

π
2

)
.

TIP! Sometimes you may wish to view more or less digits than MATLAB’s default setting of
four decimal places. There are many different number viewing options in MATLAB but for the
purposes of this text, we will restrict these options to “short,” “long,” and “bank” unless you are
specifically told otherwise. The short format is MATLAB’s default setting. It displays all numbers
to four significant figures. The long format displays the maximum number of digits that MATLAB
can store, which is 16. The bank format displays exactly two.
You can change the formatting by typing of the following commands:

Note that this changes only how the numbers are displayed; it does not alter the actual value being
used.

TRY IT! Call MATLAB’s stored value for π using format long, format bank, and format short.

MATLAB will compose functions as you would expect, with the innermost function being executed
first. The same holds true for function calls that are composed with arithmetic operations.
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TRY IT! Compute elog 10.

TRY IT! Compute e
3
4 .

Note that the log function in MATLAB is loge, or the natural logarithm. It is not log10. If you
want to use log10, you need to use log10.

TIP! Using the UP ARROW in the command prompt recalls previous commands that were executed.
If you accidentally type a command incorrectly, you can use the UP ARROW to recall it, and then
edit it instead of retyping the entire line.

The help function is a command that can be used to view the description of any function in MATLAB.
You can call the help function by typing » help at the command prompt and then the name of the
function. If you see a function you are unfamiliar with, it is good practice to use the help function
before asking your instructors what a specific function does. At the end of every chapter in this book is
a section called “Functions and Operators,” which lists the new functions and operations presented in
the chapter. If you are uncertain what these functions do, use the help function to learn about them.

WARNING! For some functions, the help file can be extremely complicated and wordy, even for
simple functions. In these cases, do not be afraid to ask your instructor for help.

TRY IT! Use the help function to find the definition of the factorial function.
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TIP! Use the format compact command to reformat text so that you have only a single space
between commands instead of the default setting of double space. You can change the spacing
format using the command » format compact; to change it back, use » format loose.

MATLAB can handle the expression 1/0, which is infinity. Note that MATLAB will return 0/0
as “not a number” or NaN. You can type Inf at the command prompt to denote infinity or NaN to
denote something that is not a number that you wish to be handled as a number. If this is confusing,
this distinction can be skipped for now; it will be explained more clearly when it becomes important.
Finally, MATLAB can also handle the imaginary number, i , which is

√−1. You can type » i to recall
the stored value of i just like π .

TRY IT! Compute 1/0, 1/∞, and ∞ · 2 to verify that MATLAB handles infinity as you would
expect.

TRY IT! Compute ∞/∞.

TRY IT! Verify that MATLAB’s stored value for i squares to −1.
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TRY IT! Compute the imaginary sum 2 + 5i .

MATLAB can also handle scientific notation using the letter e between two numbers. For example,
» 1e6 is 1 × 106 = 1000000 and » 1e-3 is 1 × 10−3 = 0.001.

TRY IT! Compute the number of seconds in 3 years using scientific notation.

1.3 Logical Expressions and Operators
A logical expression is a statement that can either be true or false. For example, a < b is a logical
expression. It can be true or false depending on what values of a and b are given. Note that this
differs from a mathematical expression which denotes a truth statement. In the previous example, the
mathematical expression a < b means that a is less than b, and values of a and b where a ≥ b are
not permitted. Logical expressions form the basis of computing, so for the purposes of this book, all
statements are assumed to be logical rather than mathematical unless otherwise indicated.

In MATLAB, a logical expression that is true will compute to the value “TRUE.” A false expression
will compute to the value “FALSE.” For the purpose of this book, “TRUE” is equivalent to 1, and
“FALSE” is equivalent to 0. Distinguishing between the numbers 1 and 0 and the logical values “TRUE”
and “FALSE” is beyond the scope of this book, but it is covered in more advanced books on computing.
Logical expressions are used to pose questions to MATLAB. For example, “3 < 4” is equivalent to, “Is
3 less than 4?” Since this statement is true, MATLAB will compute it as 1. However, 3 > 4 is false,
therefore MATLAB will compute it as 0.

Comparison operators compare the value of two numbers, and they are used to build logical expres-
sions. MATLAB reserves the symbols >,>=,<,<=,∼=,==, to denote “greater than,” “greater than
or equal,” “less than,” “less than or equal,” “not equal,” and “equal,” respectively.
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(a)

AND

(b)

OR

QQ

P P

1

11

0 0 0

0
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00

1

1

1

1

1

FIGURE 1.2

Truth tables for the logical AND and OR.

TRY IT! Compute the logical expression for “Is 5 equal to 4?” and “Is 2 smaller than 3?”

Logical operators are operations between two logical expressions that, for the sake of discussion,
we call P and Q. The fundamental logical operators we will use herein are AND, OR, and NOT, which
in MATLAB are denoted by &&, ‖, and ∼, respectively. There are other logical operators, but they are
equivalent to combinations of these three operators. P AND Q is true only if P and Q are both true.
P OR Q is true if either P or Q is true or if both P and Q are true. It is important to note that OR in
MATLAB is “inclusive” OR, meaning it is true if both P and Q are true. In contrast, “exclusive” OR
or XOR is true if either P or Q is true but false if both P and Q are true. If P is true, then NOT P is
false, and if P is false, then NOT P is true.

The truth table of a logical operator or expression gives the result of every truth combination of P
and Q. The truth tables for AND and OR are given in Figure 1.2.

TRY IT! Assuming P is true, use MATLAB to determine if the expression (P AND NOT(Q)) OR
(P AND Q) is always true regardless of whether or not Q is true. Logically, can you see why this
is the case?
First, assume Q is true:
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Now assume Q is false:

Just as with arithmetic operators, logical operators have an order of operations relative to each other
and in relation to arithmetic operators. All arithmetic operations will be executed before comparison
operations, which will be executed before logical operations. Parentheses can be used to change the
order of operations.

TRY IT! Compute (1 + 3) > (2 + 5).

TIP! Even when the order of operations is known, it is usually helpful for you and those reading
your code to use parentheses to make your intentions clearer. In the preceding example (1 + 3)
> (2 + 5) is clearer than 1 + 3 > 2 + 5.

WARNING! In MATLAB’s implementation of logic, 1 is used to denote true and 0 for false.
However, 1 and 0 are still numbers. Therefore, MATLAB will allow abuses such as » (3>2) +
(5>4), which will resolve to 2.

WARNING! Although in formal logic, 1 is used to denote true and 0 to denote false, MATLAB
slightly abuses notation and it will take any number not equal to 0 to mean true when used in
a logical operation. For example, 3 && 1 will compute to true. Do not utilize this feature of
MATLAB. Always use 1 to denote a true statement.

TRY IT! A fortnight is a length of time consisting of 14 days. Use a logical expression to determine
if there are more than 100,000 seconds in a fortnight.
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Summary
1. You can interact with MATLAB through the MATLAB environment.
2. MATLAB can be used as a calculator. It has all the functions and arithmetic operations commonly

used with a scientific calculator.
3. You can also use MATLAB to perform logical operations.

Vocabulary
AND current directory mathematic expression
arithmetic operation current directory window NOT
arithmetic operator execute order of operations
command window help function OR
command prompt logical expression truth table
command history window logical operator workspace window
comparison operator MATLAB environment

Functions and Operators
+ ∼= log
- == log10
∗ && help
/ || format short
ˆ ∼ format long
() ans format bank
> pi NaN
>= sin Inf
< cos i
<= exp

Problems
1. Remove the command history window from the MATLAB environment and then retrieve it.
2. Resize the command prompt so that it takes up less than half of the total MATLAB environment

space.
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3. Change the background of the MATLAB environment to black and the font color to orange.
4. Change the current directory to any folder other than the current default working directory, and

then change it back to the default directory.
5. Type» travel into the command prompt. This program tries to solve the Traveling Salesman

Problem.
6. Type » filterguitar into the command prompt. This program simulates the sound of a

guitar using mathematical and computational methods.
7. Type » lorenz into the command prompt. The Lorenz Attractor is a mathematical model

originally formulated to simulate atmospheric weather patterns. However, it has some surprising
results that eventually led to the field of Chaos Theory. This program displays the simulation
results for different initial conditions.

8. Compute the area of a triangle with base 10 and height 12. Recall that the area of a triangle is
half the base times the height.

9. Compute the surface area and volume of a cylinder with radius 5 and height 3.
10. Compute the slope between the points (3, 4) and (5, 9). Recall that the slope between points

(x1, y1) and (x2, y2) is y2−y1
x2−x1

.

11. Compute the distance between the points (3, 4) and (5, 9). Recall that the distance between

points in two dimensions is
√

(x2 − x1)2 + (y2 − y1)2.
12. Use MATLAB’s factorial function to compute 6!
13. A year is considered to be 365 days long. However, a more exact figure is 365.24 days. As a

consequence, if we held to the standard 365-day year, we would gradually lose that fraction of
the day over time, and seasons and other astronomical events would not occur as expected. A
leap year is a year that has an extra day, February 29, to keep the timescale on track. Leap years
occur on years that are exactly divisible by 4, unless it is exactly divisible by 100, unless it is
divisible by 400. For example, the year 2004 is a leap year, the year 1900 is not a leap year,
and the year 2000 is a leap year.
Compute the number of leap years between the years 1500 and 2010.

14. A very powerful approximation for π was developed by a brilliant mathematician named
Srinivasa Ramanujan. The approximation is the following:

1

π
≈ 2

√
2

9801

N∑

k=0

(4k)!(1103 + 26390k)

(k!)43964k
.

Use Ramanujan’s formula for N = 0 and N = 1 to approximate π . Be sure to use format long.
Compare your approximation with MATLAB’s stored value for pi. Hint: 0! = 1 by definition.

15. The hyperbolic sin or sinh is defined in terms of exponentials as sinh (x) = exp (x)−exp (−x)
2 .

Compute sinh for x = 2 using exponentials. Verify that the result is indeed the hyperbolic sin
using MATLAB’s built-in function sinh.

16. Verify that sin2 (x) + cos2 (x) = 1 for x = π, π
2 , π

4 , π
6 . Use format long.

17. Call the help function for the function sind. Use sind to compute the sin 87◦.
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18. Write a MATLAB statement that generates the following error:
“Undefined function or method ‘sni’ for input arguments of type ‘double’.”
Hint: sni is a misspelling of the function sin.

19. Write a MATLAB statement that generates the following error:
“Not enough input arguments.”
Hint: Input arguments refers to the input of a function (any function); for example, the input in
sin(pi/2) is pi/2.

20. Write a MATLAB statement that generates the following error:
“Expression or statement is incorrect–possibly unbalanced (, {, or [.”

21. If P is a logical expression, the law of noncontradiction states that P AND (NOT P) is always
false. Verify this for P true and P false.

22. Let P and Q be logical expressions. De Morgan’s rule states that NOT (P OR Q) = (NOT P)
AND (NOT Q) and NOT (P AND Q) = (NOT P) OR (NOT Q). Generate the truth tables for
each statement to show that De Morgan’s rule is always true.

23. Under what conditions for P and Q is (P AND Q) OR (P AND (NOT Q)) false?

24. Construct an equivalent logical expression for OR using only AND and NOT.

25. Construct an equivalent logical expression for AND using only OR and NOT.

26. The logical operator XOR has the following truth table:
Construct an equivalent logical expression for XOR using only AND, OR, and NOT that has
the same truth table (see Figure 1.3).

1

0

0

0 0

1

1

1

Q

P

FIGURE 1.3

XOR Truth table.

27. Do the following calculation at the MATLAB command prompt. Give answers accurate to 16
digits.

e2 sin π/6 + loge(3) cos π/9 − 53
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28. Do the following logical and comparison operations at the MATLAB command prompt. You may
assume that P and Q are logical expressions.
For P = 1 and Q = 1: Compute NOT(P) AND NOT(Q).
For a = 10 and b = 25: Compute (a < b) AND (a == b).
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Motivation
Currently, technology can acquire information from the physical world at an enormous rate. For example,
there are sensors that can take tens of thousands of pressure, temperature, and acceleration readings per
second. To make sense of all this data and process it in a way that will help solve engineering problems
requires storing information in data structures that you and MATLAB can easily work with.

Variables are used in MATLAB to store and work with data. However, data can take many forms.
For example, data can be numbers, words, or have a more complicated structure. It is only natural that
MATLAB would have different kinds of variables to hold different kinds of data. In this chapter, you
will learn how to create and manipulate MATLAB’s most common variable types.

2.1 Variables and Assignment
When programming, it is useful to be able to store information in variables. A variable is a string of
characters and numbers associated with a piece of information. The assignment operator, denoted by
the “=” symbol, is the operator that is used to assign values to variables in MATLAB. The line » x =
1 takes the known value, 1, and assigns that value to the variable with name “x.” After executing this
line, you will see a new variable appear in the workspace window. Until the value is changed or the
variable deleted, the character x behaves like the value 1.

An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00002-6
© 2015 Elsevier Inc. All rights reserved.
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TRY IT! Assign the value 2 to the variable y. Multiply y by 3 to show that it behaves like the
value 2.

The workspace is an abstraction for the space in the computer’s memory being utilized to store
variables. For now, it is sufficient to know that the command window has its own workspace, the
contents of which are made visually available in the workspace window. As a result of the previous
example, you will see the variable y appear in the workspace window. You can view a list of all the
variables in the command window’s workspace using the function whos.

Note that the equal sign in programming is not the same as a truth statement in mathematics. In math,
the statement x = 2 declares the universal truth within the given framework, x is 2. In programming, the
statement x = 2means a known value is being associated with a variable name, store 2 in x. Although
it is perfectly valid to say 1 = x in mathematics, assignments in MATLAB always go left: meaning the
value to the right of the equal sign is assigned to the variable on the left of the equal sign. Therefore,
» 1 = x will generate an error in MATLAB. The assignment operator is always last in the order of
operations relative to mathematical, logical, and comparison operators.

TRY IT! The mathematical statement x = x+1 has no solution for any value of x . In programming,
if we initialize the value of x to be 1, then the statement makes perfect sense. It means, “Add x
and 1, which is 2, then assign that value to the variable x.” Note that this operation overwrites the
previous value stored in x.

There are some restrictions on the names variables can take. Variables can only contain alphanumeric
characters (letters and numbers) as well as underscores. However, the first character of a variable name
must be a letter. The maximum length of a variable name is 255 characters, which is rarely a problem.
Spaces within a variable name are not permitted, and the variable names are case-sensitive (e.g., x and
X will be considered different variables).

TIP! Unlike in pure mathematics, variables in programming almost always represent something
tangible. It may be the distance between two points in space or the number of rabbits in a population.
Therefore, as your code becomes increasingly complicated, it is very important that your variables
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carry a name that can easily be associated with what they represent. For example, the distance
between two points in space is better represented by the variable dist than x, and the number of
rabbits in a population is better represented by nRabbits than y.

Note that when a variable is assigned, it has no memory of how it was assigned. That is, if the value
of a variable, y, is constructed from other variables, like x, reassigning the value of x will not change
the value of y.

EXAMPLE: What value will y have after the following lines of code are executed?

WARNING! You can overwrite variables or functions that have been stored in MATLAB. For
example, the command » sin = 2 will store the value 2 in the variable with name sin. After
this assignment sinwill behave like the value 2 instead of the function sin. Therefore, you should
always be careful not to give your variables the same name as built-in functions or values. An easy
way to check if a name is already being used is by using the help function.

You can clear a variable from the workspace using the clear function. Typing » clear x will
clear the variable x from the workspace. Typing » clear or » clear all will remove all the
variables from the workspace. Typing » clc will clear the screen, but will not remove any of your
variables.

In mathematics, variables are usually associated with unknown numbers; in programming, variables
are associated with a value of a certain type. There are many data types that can be assigned to variables.
A data type is a classification of the type of information that is being stored in a variable. The basic
data types that you will utilize throughout this book are logical, double, char, struct, and cell. A formal
description of these data types is given in the following sections.

First, we give a brief overview of matrices and their parts. A matrix or array can be viewed as
a rectangular table of values, not necessarily numerical values. An element of a matrix is a unit of
information contained in a matrix. An index of a matrix is an address within that array. For this book,
we will be dealing exclusively with one- and two-dimensional arrays. For one-dimensional arrays, the
index is a positive integer denoting the position of the element under consideration. For two-dimensional
arrays, the index is a pair of positive integers that denotes the row and column of the element under
consideration.
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In mathematics, matrices are usually associated with tables of numbers. However, in MATLAB,
every value is considered to be a matrix. Words are defined as a matrix of letters. Even a single number
is considered a 1 × 1 matrix.

TIP! Some of the data structures that you will create and work with will be very large, having
thousands or millions of entries. Since it is not useful for a human to physically view the contents
of these data structures, a semicolon can be used after a variable is created to suppress the display.
For example,» x = 2;will not display the resulting assignment to the screen, but the assignment
to x will still be executed. You can verify this by looking in the workspace window.

TRY IT! Assign the value 2 to the variable x with a semicolon and without a semicolon after the
command.

TIP! Now that you know how to assign variables, it is important that you learn to never leave
unassigned commands. An unassigned command is an operation that has a result, but that result
is not assigned to a variable. For example, you should never use » 2 + 2. You should instead
assign it to some variable » x = 2 + 2. This allows you to “hold on” to the results of previous
commands and will make your interaction with MATLAB must less confusing.

2.2 Double Arrays
A double is a MATLAB data type used to denote numbers. Double is the most important data type
you will learn about because engineers work most frequently with numbers. There are other data types
used to denote numbers, but unless otherwise indicated, all numbers will be doubles for the purposes
of this text unless otherwise stated. Double stands for “double-precision,” which will be described in
more detail in Chapter 8, on Representation of Numbers.

TRY IT! Assign the value 1 to the variable x. Verify that x is a double using the class function.
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You can build up double arrays in MATLAB using square brackets, [ ]. The technical term for the
function provided by brackets is called concatenation (noun) or concatenate (verb). It is common to
separate columns by commas and rows by semicolons within a concatenation. You can create an empty
array by placing brackets around nothing.

TRY IT! Create the following arrays:

x = [
1 4 3

]

y =
[

1 4 3
9 2 7

]

or

or

or

TRY IT! Create an empty array. Verify that it is a double using the class function.

Note that, again, MATLAB always resolves the innermost brackets first. The line» y = [[1; 9],
[4; 2], [3; 7]] will concatenate [1;9] before the outer brackets. If you try to concatenate
matrices that do not fit together (i.e., they do not form a rectangle), you will get an error saying that the
horizontal or vertical concatenation is incorrect.

TIP! A bracket can be read as “put together.” So » x = [1 4 3] can be read as “put together
1, 4, and 3 into an array, and then assign it to the variable x.”

WARNING! MATLAB abuses notation by giving the semicolon two purposes. It suppresses output
when at the end of a line but separates rows when making arrays, so be careful when using it.
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Many times we would like to know the size or length of an array. The size function is called on
an array M and returns a 1 × 2 array where the first element is the number of rows in the matrix M
and the second element is the number of columns in M. Note that the output of the size function
is also an array. The size function also allows you to specify the size of only one dimension using
the input size(M,dim). So size(M,1) would return the number of rows in M, and size(M,2)
would return the number of columns in M. The length function is called on an array M and returns
the number of elements in matrix M if M is one dimensional. If M has more than one dimension, then it
returns the length of the largest dimension of M. Try not to use this feature of length (i.e., use length
on one-dimensional arrays only).

TRY IT! Compute the size and length of the matrices x and y given in the previous example. Use
the size function to obtain only the number of rows in y and only the number of columns in y.

Very often we would like to generate arrays that have a structure or pattern. For instance, we may
wish to create the array z = [1 2 3 … 2000]. It would be very cumbersome to type the entire
description of z into the command prompt. For generating arrays that are in order and evenly spaced,
it is useful to use the colon operator, “:”.

CONSTRUCTION: Colon Operator

Using the colon operator, z can be created with z = 1:1:2000. Since it is very common to have
an increment of 1, if an increment is not specified, MATLAB will use a default value of 1. Therefore »
z = 1:2000 will have the same result as » z = 1:1:2000. Negative or noninteger increments
can also be used. So z = 2:−.5:0 becomes z = [2 1.5 1 .5 0]. If the increment “misses”
the last value, it will only extend until the value just before the ending value. For example, x = 1:2:8
would be [1, 3, 5, 7].

Sometimes we want to guarantee a start and end point for an array but still have evenly spaced
elements. For instance, we may want an array that starts at 1, ends at 8, and has exactly 10 elements.
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For this purpose you can use the function linspace. Unlike the functions you have worked with
before that take only one input, linspace takes three input values separated by commas. So A =
linspace(a,b,n) generates an array of n equally spaced elements starting from a and ending at b.

TRY IT! Uselinspace to generate an array starting at 3, ending at 9, and containing 10 elements.

Another type of array that is highly structured is a matrix in which every element is the same number.
For this purpose, the functions zeros and ones are useful. These functions take in a number of rows
and a number of columns and return a matrix of the input dimension of zeros or ones.

TRY IT! Generate a 3 × 5 array of ones and zeros.

Any array-building functions or operations can be combined to create complicated arrays. Keep in
mind that MATLAB will always evaluate the innermost function or bracket set first.

TRY IT! Create the following array:

M =

⎡
⎢⎢⎢⎢⎣

0 0 0 1 1 1
0 0 0 1 1 1
1 2 3 4 5 6
2 4 6 8 0 0
8 7 2 5 9 0

⎤
⎥⎥⎥⎥⎦
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In MATLAB, the indices of an array are denoted by parenthese attached to the variable name. If
A is an array in the current workspace, we can obtain the element in row r and column c using the
notation A(r,c). This is referred to as array indexing. You can specify an array of indices to get
multiple elements of an array. In other words, r and c can be arrays, and you can use array creation
operations within the indexing. If you want an entire row or column, you can shorthand this operation
with a colon, :. If you want to go to the end of an array while indexing, you can use the word end.

TRY IT! Let A = [1.5 2.5 3.5; 4.5 5.5 6.5] be in the current workspace. Find the
element in the second row, third column (i.e., 6.5) using array indexing.

TRY IT! Let A be as in the previous example. Retrieve the elements in the first row and the first
and third columns.

TRY IT! Let A be as in the previous example. Retrieve all the elements in the second row of A.

or

or
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or

Remember that MATLAB will always resolve the innermost command first. Therefore in the line
a = A(2,1:size(A,2)), size(A,2)will be evaluated first, the value of which is 3 (the number
of columns in A). Then 1:size(A,2) is equivalent to 1:3 and is resolved next. Then A(2,[1 2
3]) is resolved to [4.5 5.5 6.5], and, finally, the result is assigned to the variable a.

For one-dimensional arrays, you can shorthand by only including a single index.

TRY IT! Let A = [7 3 9 2 4 5]. Write commands that retrieve the third element of A,
retrieve the third, fifth, and sixth elements ofA, and retrieve the third, fourth, and fifth elements ofA.

You can reassign a value of an array by using array indexing and the assignment operator. You can
reassign multiple elements to a single number using array indexing on the left side. You can also reassign
multiple elements of an array as long as both the number of elements being assigned and the number
of elements assigned is the same. You can create an array using array indexing.

TRY IT! Let A = [1 2 3 4 5 6]. Reassign the fourth element of A to 7. Reassign the first,
second, and third elements to 1. Reassign the second, third, and fourth elements of A to 9, 8, and 7.
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TRY IT! Create the matrix A = [1 2; 3 4] using array indexing.

WARNING! Although you can create an array from scratch using indexing, we do not advise it.
It can confuse you and errors will be harder to find in your code later. For example, » B(2,2)
= 1 will give the result B = [0 0; 0 1], which is strange because B(1,1), B(1,2), and
B(2,1) were never specified.

Basic arithmetic is defined for arrays. However, there are operations between a scalar (a single
number) and an array and operations between two arrays. We will start with operations between a scalar
and an array. To illustrate, let a be a scalar, and M be a matrix.

M + a, M−a, M*a and M/a adds a to every element of M, subtracts a from every element of M,
multiplies every element of M by a, and divides every element of M by a, respectively.

TRY IT! Let M = [1 2; 3 4]. Add and subtract 2 from M. Multiply and divide M by 2. Square
every element of M. On your own, verify the reflexivity of scalar addition and multiplication:
M + a = a + M and aM = Ma.
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Describing operations between two matrices is more complicated. Let M and P be two matrices of
the same size. M − P takes every element of M and subtracts the corresponding element of P . Similarly,
M − P subtracts every element of P from the corresponding element of M .

TRY IT! Let M = [1 2; 3 4] and P = [3 4; 5 6]. Compute M + P and M − P.

There are two different kinds of matrix multiplication (and division). There is element-by-element
matrix multiplication and standard matrix multiplication. For this section, we will only show how
element-by-element matrix multiplication and division work. Standard matrix multiplication will be
described in Chapter 13 on Linear Algebra. MATLAB takes the * symbol to mean standard matrix
multiplication. So element-by-element multiplication is denoted by .*, and it is read “dot times.” For
matrices M and P of the same size,M.*P takes every element ofM and multiplies it by the corresponding
element of P. The same is true for ./ and .ˆ.

TRY IT! Let M = [1 2; 3 4] and P = [3 4; 5 6]. Compute M.*P, M./P, and M.ˆP.
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WARNING! If you accidentally forget to put a “.” in front of the multiplication sign, you will
likely get an error that says “inner matrix dimensions must agree.” The reason for this error will
become clear when matrix multiplication is described later in Chapter 12.

The transpose of a matrix, M , is a matrix, P , where P(i, j) = M( j, i). In other words, the
transpose switches the rows and the columns of M. You can transpose a matrix in MATLAB using
an apostrophe, ’.

TRY IT! Let M = [1 2; 3 4]. Compute the transpose of M .

All of MATLAB’s built-in arithmetic functions, such as sin, can take arrays as input arguments.
The output is the function evaluated for every element of the input array. A function that takes an array
as input and performs the function on it is said to be vectorized.

TRY IT! Compute sqrt for x = [1 4 9 16].

Logical operations are only defined between a scalar and an array and between two arrays of the
same size. Between a scalar and an array, the logical operation is conducted between the scalar and each
element of the array. Between two arrays, the logical operation is conducted element-by-element.

TRY IT! Check which elements of the array x = [1 2 4 5 9 3] are larger than 3. Check
which elements in x are larger than the corresponding element in y = [0 2 3 1 2 3].
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MATLAB can index elements of an array that satisfy a logical expression.

TRY IT! Let v be the same array as in the previous example. Create a variable y that contains all
the elements of x that are strictly bigger than 3. Assign all the values of x that are bigger than 3,
the value 0.

2.3 Char Arrays
Char is a data type for storing alphanumeric characters. An array of chars, usually one-dimensional,
is called a string. Strings are assembled using apostrophes on both sides, but brackets can also be used
to concatenate strings.

TRY IT! Assign the character ‘S’ to the variable with name s. Assign the string ‘Hello World’ to
the variable w. Verify that s and w have the type char using the class function.

Note that a blank space, ‘ ’, between ‘Hello’ and ‘World’ is also a char. Any symbol can be a char,
even the ones that have been reserved for operators. Note that as a char, they do not perform the same
function. Although they look the same, MATLAB interprets them completely differently.
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TRY IT! Assign the char, '+', to the variable p. Verify that p does not behave like the addition
operator, +.

WARNING! Numbers can also be expressed as chars. For example, x = '123' means that
x is the string 123 not the number 123. However, chars represent words or text and so should
not have addition defined on them. MATLAB somewhat abuses this difference and allows addition
between chars and doubles (as well as other arithmetic operations). The reason this works is that
every char has something called a char code, which is how the char is represented in deeper
levels of MATLAB. It is strongly advised that you avoid doing this.

TRY IT! Add 1 to the string 1. Add 1 to the string 123.

TIP! You may find yourself in a situation where you would like to use an apostrophe as a char.
This is problematic since an apostrophe is used to denote strings. Fortunately, an apostrophe can
be made by using two apostrophes.

TRY IT! Create the string 'don't'.

Just as with double arrays, the size and length of a string is the number of rows and columns or the
number of elements contained in it, respectively. Strings can be concatenated together, vertically and
horizontally, using brackets just like doubles. However, for the purposes of this text, charswill always
be one dimensional.
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TRY IT! Create the stringss1 = 'Hello' ands2 = 'World' and use the concatenation of
s1 and s2 to make the string s3 = 'Hello World'. Remember the space between the words!

Char arrays are indexed the same as double arrays, including array indexing. An empty string can
be created with two apostrophes, ''.

TRY IT! Assign the char ‘E7 is Awesome’ to the variable s. Retrieve only the letter E and only
the word Awesome from s using array indexing.

TRY IT! Create an empty string. Verify that the empty string is a char.

A very useful function in MATLAB is sprintf. The sprintf function writes new data to a
preformatted string.

TRY IT! Use the sprintf function to make the strings s1 = 'My name is Timmy' and
s2 = 'My name is Alex'.
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WHAT IS HAPPENING? In the previous example, the first input to sprintf is a string of the
desired format. In each case, the place where the name should be can be different. Therefore, a %s
is placed wherever the name should be (s stands for string in this case).

You can make longer formatted strings as well with more than one placeholder. You can usesprintf
for inserting strings %s, integers %d, or more generic numbers %f and %g. You can also control the
number of digits inserted into the formatted string, but we will leave that to you to explore on your own.

TRY IT! Use the sprintf function to make the string s = 'This is E7 and there
are 423 students in the class'.

TIP! There are functions that are said to take sprintf type inputs. This means that the function
can take in formatted strings in the same way as sprintf.

2.4 Struct Arrays
A struct is a data type that is useful when each element of an array is defined by several properties.
For example, you may want each element of an array to represent a person defined by a name and a
personal ID number. However, each person may be difficult to define by only one char or double. In
a struct array, the properties of each element are defined by its fields. The data type contained in a
field can be of any data type. The struct array name and the field are separated by a period. As with
double and char arrays, the index or indices are specified in parentheses next to the array name.
There are ways of making a structure array all at once. However, it is more straightforward to create
them using array indexing, which is not recommended for double or char arrays.

TRY IT! Let a student be defined by a name (char), personal ID number (double), and an array
of grades (double). Populate a struct array studentwith field names, ID, and grades. Verify
that student has type struct using the class function.
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TIP! Although it is possible to populate all the student names first, then all the IDs, and so on, it
is advisable to finish populating the fields of a single element first before moving on.

Struct arrays can be two or more dimensions but for the purposes of this course, structs will
always be one dimensional. Since structs are arrays, they can be concatenated, but only if the two
struct arrays have the same fields (and are of compatible size). Also, addition and other arithmetic
operations are not allowed between structs or between structs and numbers.

TRY IT! Populate a new struct called newStudent with the same fields as the student
struct in the previous example. Concatenate newStudent to the student struct.

Struct arrays are indexed using parentheses between the struct name the period separating the
field name. You can use array indexing the same as with double and char arrays.

TRY IT! Retrieve the second element of the student struct in the previous example. Retrieve
the first, second, and third element of student as well.
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The information contained within the field of an element of a struct array can be retrieved by
indexing the desired element, then placing a dot, and then typing the name of the field. For example,
student(2).grades will return information contained in the grades field of the second element of
student. The values contained in the fields of structs arrays retain their original data type; therefore, they
behave exactly as that data type. For example, student(2).grades is the double [89 99 75
100 95]. Therefore, we can use array indexing to get specific elements of the second student’s grades.

TRY IT! Retrieve the grades for the second student in the struct array student in the previous
example. Verify that the grades are double using the class function. Retrieve only the last
element of second student’s grades using array indexing on the grades field of student.

As stated before, the fields of a struct array can have any data type, including a struct or cell
(defined in the next section). Just remember the field of a struct behaves exactly like that data type.

TRY IT! Populate a struct called myActivitieswith fields sports, afterSchool, and
clubs. Assign a field called activities to the first element of the previous student struct. Verify
that the activities field of student is a struct using the class function. Assign the data contained
in the club field in the activities of the student struct to the variable club.
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WARNING! If a struct has more than one element and you omit the indexing when calling a
field, MATLAB will treat the command as if you called the field for each element individually. For
example, typing student.name will have the following result:

Avoid doing this when coding because you can get unexpected results.

2.5 Cell Arrays
A cell is a data type for unstructured information. In a cell array, each element can have any data type,
including another cell. However, elements of cell arrays are indexed using braces, {}, rather than
parentheses. They are also concatenated using braces. Alternatively, you can create a cell array
using the cell function, then populate the elements one by one.

TRY IT! Create a 1×3 cell array where the first element is the string ‘E7’, the second element is
the double 2011, and the third element is the struct array student created in a previous section
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on struct arrays. Create the cell array using concatenation. Verify that the created cell
array has type cell using the function class. Verify that each of the elements has type char,
double, and struct, respectively. Repeat this example by first calling the cell function, then
populating the elements one by one.

A common mistake to make when using cell arrays is to index the cell array with parentheses
rather than braces. If you do this, you will get a cell array containing the contents of the indexed
elements.

TRY IT! Index the cell array from the previous example using parentheses rather than braces.
Verify that contents are the cell arrays rather than the expected data types.
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WARNING! Although using parentheses rather than braces can be useful, we advise against doing
so while you are learning to program in MATLAB.

TIP! Usually data will have some kind of structure to it. As a result, it is usually better to have data
stored in a struct rather than a cell.

There are many quirky behaviors associated with cell arrays. For this book, we will use only the
rudimentary creation and manipulation operations discussed in this section.

Summary
1. Storing, retrieving, and manipulating information and data is important in any engineering field.
2. Variables are an important tool for handling data values. In MATLAB all variables are arrays.
3. There are four basic data types for storing information in MATLAB: double (numbers), char

(words), struct (structured information), and cell (unstructured information).

Vocabulary
array data type struct
array indexing double transpose
assign element of a matrix unassigned command
assignment operator element-by-element matrix multiplication variable
cell field vectorized
char index of a matrix workspace
concatenate matrix
concatenation sprintf type input
data type string

Functions and Operators
. fliplr rand
: getfield randn
; i rmfield
= Inf setfield
[] isfield size
{} length sprintf
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cell linspace strcmp
clc lower strcmpi
clear NaN upper
clear all num2str whos
fieldnames ones zeros

Problems
1. Assign the value 2 to the variable x and the value 3 to the variable y. Clear just the variable x.

Then clear all the variables using clear all. Clear the screen using clc.

2. Write a line of code that generates the following error:
??? Undefined function or variable 'x.'

3. Write a line of code that generates the following error:
The expression to the left of the equals sign is not a valid
target for an assignment.

4. Let x = 10 and y = 3 be defined in the workspace. Write a line of code that will make each
of the following assignments.

u = x + y

v = xy

w = x/y

z = sin x

r = 8 sin x

s = 5 sin xy

p = x y .

5. Let x = [1 4 3 2 9 4] and y = [2 3 4 1 2 3]. Compute the assignments from
Problem 4. Remember to use array operations!

6. Recall that linspace(a,b,n) generates an array of n evenly spaced numbers starting at a
and ending at b. Given a, b, and n, write a statement in terms of a, b, and n using the colon
operator that produces the same array as linspace(a,b,n).

7. Create the following matrix in a single assignment. Try to use as few numbers as possible.

M =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 1
0 0 0 0 0 1
1 2 3 4 5 1
0 2 4 6 8 1
8 7 2 5 9 1

⎤
⎥⎥⎥⎥⎦
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8. For the matrix, M , in the previous problem, use the sum function to compute the sum of each
of the rows in M . Hint: Use the sum function.

9. Use the rand function to generate a uniformly distributed array of 1000 numbers between
0 and 1. The mean of randomly distributed numbers between 0 and 1 should be 0.5. Use the
mean function to find the mean of the array created. Verify that it is close to 0.5.

10. Assign the string ‘123’ to the variable S. Use the function str2num to change S into a double.
Assign the output of str2num to the variable N. Verify that S is a char and N is a double
using the class function.

11. Assign the string 'HELLO' to the variable s1 and the string 'hello' to the variable s2.
Use the strcmp function to compare s1 and s2 to show that they are not equal. Use the
strcmp function to show that s1 and s2 are equal if the lower function is used on s1. Use
the strcmp function to show that s1 and s2 are equal if the upper function is used on s2.

12. Use the sprintf function to generate the following strings.
The word 'Engineering' has 11 letters.
The word 'Book' has 4 letters.
The word 'MATLAB' has 6 letters.

13. Let x = 0:10 and y = 10:-1:0. Use the equality comparison operator and the all func-
tion to show that all the elements of x equal all the elements of y after the fliplr function
is used on y. Try performing the same operation using the isequal function.

14. Letx = linspace(1,10,100). What will be the output of» y = class(size(x))
and »z = size(class(x))? What about » v = class(class(size(x))) and »
w = size(size(class(x)))?

15. Write lines of code that generate each of the following array-related errors:
??? Error: Unbalanced or unexpected parenthesis or bracket.
??? Attempted to access A(-1); index must be a positive integer
or logical.
??? Error using ==> horzcat CAT arguments dimensions are not
consistent.
??? Error using ==> vertcat CAT arguments dimensions are not
consistent.
??? In an assignment A(I) = B, the number of elements in B and
I must be the same.
??? Error using ==> plus Matrix dimensions must agree.
??? Attempted to access A(4); index out of bounds because
numel(A)=3.

16. Write lines of code that generate each of the following struct-related errors:
??? Error using ==> horzcat CAT arguments are not consistent in
structure field names.
??? Undefined function or method 'plus' for input arguments of
type 'struct'.
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17. Let cars be a struct where each element represents a different car. List some fields that cars
should have given that you are (a) a car salesman and (b) an engineer.

18. Create a struct array called Class with fields title (string), semester (string), and
enrollment (double). Populate the Class struct with information from three of your favorite
courses.
Example first element:

For the example first element given, use concatenation of the field values in Class to generate
the string 'E7: Spring 2011'.

19. Create a cell array called Class where each row contains data about a class. The first element
of the row should be the title of the course (string), the second element should be the semester
of the course (string), and the third element of the row should be the enrollment of the course
(double). Populate the Class cell with information from three pieces of information from
your favorite course.

Example first row:

For the example first row given, use concatenation of the elements in Class to generate the
string 'E7: Spring 2011'.

20. Write a command that assigns the string Hello World to the variable S.
21. Let S1 and S2 be strings in the current workspace. Write a command that uses the strcmp

function to check if they are the same.
22. Write a command that will return the size of the array S created in the previous problem.
23. Write a command that will return the length of the person struct.
24. Write a command that will access the contents of the second element of the person struct.
25. Write a command that uses the class function to determine the data type of the contents in

the name field of the second element in the person struct.
26. Write a command that creates an empty 1 × 3 cell array. Use the cell function.
27. Write a command that creates a 2 × 2 cell array where the upper left element contains the

string dog, the upper right element contains the string cat, the lower left element contains the
double 10, and the lower right element contains the array [23 5 4 93].

28. Write a command that assigns the value π/4 to the variable x.

29. Write a command that assigns a 1 × 100 array of zeros to the variable z.

30. Write a command that assigns the array A=[1 3 5 . . . 19 21].

31. Write a single command that will access the third, fourth, and seventh elements of A.



Problems 41

32. Write a command that assigns an array starting at 17, ending at 23, and containing 101 elements
to the variable M.

33. Write a command that will give the last element of M.

34. Let A and B be 1 × n arrays in the current workspace. Write a command that will horizontally
concatenate them and a command that will vertically concatenate them.

35. Let A be a double array in the current workspace. Write a command that will return an array
consisting of all the elements of A that are zero. Hint: Use the find function and logical
operations.

36. Write the commands that will clear all the variables in the workspace and clear the screen.
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Motivation
Programming often requires repeating a set of tasks over and over again. For example, the sin function
in MATLAB is a set of tasks (i.e., mathematical operations) that computes an approximation for sin (x).
Rather than having to retype or copy these instructions every time you want to use the sin function, it
is useful to store this sequence of instruction as a function that you can call over and over again.

Writing your own functions is the focus of this chapter, and it is the single most powerful use of
computer programming. By the end of this chapter, you should be able to declare, write, store, and call
your own functions.

3.1 Function Basics
In programming, a function is a sequence of instructions that performs a specific task. A function can
have input arguments, which are made available to it by the user, the entity calling the function.
Functions also have output arguments, which are the results of the function that the user expects to
receive once the function has completed its task. For example, the MATLAB function sin has one input
argument, an angle in radians, and one output argument, an approximation to the sin function computed
at the input angle (rounded to 16 digits). The sequence of instructions to compute this approximation
constitute the body of the function, which until this point has not been shown.

A function can be specified in several ways. A function can be specified mathematically; for example,
f : x → sin x , which means f is the function that takes x and returns sin x . A function can be
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defined by its type definition, a list of its input and output arguments by data type; for example,
sin: double → double, which means sin is a function that takes doubles as input arguments and
returns doubles as output arguments.

In this book, we will define functions in terms of its function header. A function header is the
way a function’s type definition is given to MATLAB. The function header is a list of the function’s
output arguments, surrounded by brackets, followed by an equal sign, the function’s name, and then the
function’s input arguments, surrounded by parentheses. For example, the sin function’s header looks
like this: [y] = sin(x).

For more complicated functions, the type definition and function header will usually be followed by
a brief description of what the function should do (i.e., the relationship between the input and output
arguments).

EXAMPLE: What is the type definition and function header of the linspace function? What
is the type definition and function header of the strcmp function?

To program your own functions, you will need to use a new part of the MATLAB environment called
the editor. The editor allows you to build, edit, and save your functions. You can open the editor by

clicking on the “new m-file” button, , in the upper left-hand corner of the MATLAB environment.
Figure 3.1 shows the MATLAB Editor.

We will start by walking through a construction of a very simple function defined by [out] =
myAdder(a,b,c), where out is the sum of a,b, and c.

The first line of a new function should always be the word “function,” followed by its function header.

CONSTRUCTION: Function header (first line of function).

The first line of myAdder is then:

You may notice that the word function turns blue. This word turns blue because “function” is
a keyword. Keywords are words that MATLAB has reserved to carry a specific meaning. In this
case, the word function is reserved to denote the start of a function. Other keywords will be defined
in later chapters. Keywords may not be assigned as variable or function names. For example, >>
function = 2 would produce an error.
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FIGURE 3.1

The MATLAB editor.

Next, you must write the function body. This is the sequence of instructions that will produce the
desired outputs based on the given inputs. If there are multiple lines within a function, MATLAB will
execute them in order. Since our function is very simple, the body will require only a single line.

Note the semicolon at the end of the line out = a + b + c. This is very important. In most
programming languages, if you want something printed to the screen (i.e., to show up on the screen)
when a function is run, you have to specifically instruct the computer to do so. However, MATLAB
abuses this convention and prints out any unsuppressed line of code to the screen. As will be demonstrated
later, this can make things very confusing so you must take care to suppress all the instructions within a
function. Use the display function or functions like it when you want a function to print to the screen.

WARNING! Always suppress code within a function by using a semicolon at the end of all
assignment statements.
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Second, notice that the word “end” is placed at the end of the function. The word “end” turns blue
just like the keyword “function.” This is because end is also a keyword. In this case, it denotes the end
of a function. Later you will see that it ends many other things as well. This function will still work if
end is not placed there, but it will cause problems later on. Therefore, for our purpose, always end a
function with the keyword end.

WARNING! Always end a function with an end statement.

Before trying your new function, we now introduce some good coding practice. A comment is a
line within a function that is not read as code. That is, MATLAB will skip over it when running your
function. You can denote a comment by placing a % symbol at the beginning of a line. You will notice
that any characters in that line turn green. MATLAB will not execute any code that is green. When
your code becomes longer and more complicated, comments help you and those reading your code
to navigate through it and understand what you are trying to do. Getting in the habit of commenting
frequently will help prevent you from making coding mistakes, understand where your code is going
when you write it, and find errors when you make mistakes. It is also customary to put a description
of the function as well as its type definition, author, and creation date in a comment under the function
header. We highly recommend that you comment heavily in your own code. We add comments to
myAdder.

TIP! For PC users, you can “comment out” large blocks of code by highlighting a block of code
with the mouse and then pressing ctrl+r. For MAC users, you can produce the same effect with
command+/. You can uncomment the code by pressing ctrl+t for PCs and command + t
for MACs. Commenting large blocks of code is useful when you want to try a different solution to
a problem without risk of losing information from your previous attempt.

TIP! Build good coding practices by giving variables and functions descriptive names, commenting
often, and avoiding extraneous lines of code.
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For contrast, consider the following function that performs the same task as myAdder but is con-
structed poorly. As you can see, it is extremely difficult to see what is going on and the intention of the
author.

EXAMPLE: Poor representation of myAdder.

Now the function is complete according to the given specifications and is well commented. To save

your function, click the save button, , in the upper left-hand corner of the editor. You can also save
your function by pressing Alt → f → s or ctrl+s. When prompted to name the file, the filename
must have the same name as the function name. The file type should be .m, an m-file, which is the
standard file type for MATLAB functions. Save this function as myAdder.m.

Functions must conform to a naming scheme similar to variables. They can only contain alphanu-
meric characters and underscores, and the first character must be a letter. The name of the function
should be less than 255 characters long. Once your function is saved in the current working directory,
it behaves exactly as one of MATLAB’s built-in functions and can be called from the command prompt
or by other functions.

TIP! It is good programming practice to save often while you are writing your function. In fact
many programmers report saving using the shortcut ctrl+s every time they stop typing!

TRY IT! Use your function myAdder at the command prompt to compute the sum of a few
numbers. Verify that the result is correct. Try calling the help function on myAdder.
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WHAT IS HAPPENING? First recall that the assignment operator works from right to left. This
means that myAdder(1,2,3) is resolved before the assignment to d.

1. MATLAB finds the function myAdder.
2. myAdder takes the first input argument value 1 and assigns it to the variable with name a (first

variable name in input argument list).
3. myAdder takes the second input argument value 2 and assigns it to the variable with name b

(second variable name in input argument list).
4. myAdder takes the third input argument value 3 and assigns it to the variable with name c

(third variable name in input argument list).
5. myAdder computes the sum of a, b, and c, which is 1 + 2 + 3 = 6.
6. myAdder assigns the value 6 to the variable out.
7. myAdder reaches the end of the function, identified by the keyword end.
8. myAdder verifies that a variable with name out (first variable name in the output argument

list) has been created.
9. myAdder outputs the value contained in the output variable out, which is 6.

10. myAdder(1,2,3) is equivalent to the value 6, and this value is assigned to the variable with
name d.

MATLAB gives the user tremendous freedom to assign variables to different data types. For example,
it is possible to give the variable x a struct value or a double value. In other programming languages
this is not always the case, you must declare at the beginning of a session whether x will be a struct
or a double, and then you’re stuck with it. This can be both a benefit and a drawback (more on this
in Chapter 9). For instance, myAdder was built assuming that the input arguments were doubles.
However, the user may accidently input a struct or cell into myAdder, which is not correct. If you try
to input a nondouble input argument into myAdder, MATLAB will continue to execute the function
until something goes wrong or until the function ends.

TRY IT! Use the string '1' as one of the input arguments to myAdder. Also use a struct as one
of the input arguments to myAdder.
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TIP! Remember to read the errors that MATLAB gives you. They usually tell you exactly where
the problem was. In this case, the error says Error in ==> myAdder at 3, meaning there
was an error in myAdder on the third line. The reason there was an error is because the variable
‘c’ was assigned a struct and then added to a double, which is undefined.

At this point, you do not have any control over what the user assigns your function as input arguments
and whether they correspond to what you intended those input arguments to be. So for the moment,
write your functions assuming that they will be used correctly. You can help yourself and other users
use your function correctly by commenting your code well.

You can compose functions by assigning function calls as the input to other functions. In the order of
operations, MATLAB will execute the innermost function call first. You can also assign mathematical
expressions as the input to functions. In this case, MATLAB will execute the mathematical expressions
first.

TRY IT! Use the function myAdder to compute the sum of sin (π), cos (π), and tan (π). Use
mathematical expressions as the input to myAdder and verify that it performs the operations
correctly.

MATLAB functions can have multiple output arguments. The example demonstrates how to write
and call a function that has multiple output arguments and how to make assignments to all of its
outputs. When calling a function with multiple output arguments, you can place a list of variables you
want assigned inside brackets separated by commas. Consider the following function (note that it has
multiple output arguments):
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TRY IT! Compute the function myTrigSum for a = 2 and b = 3. Assign the first output
argument to the variable C and the second output argument to the variable D.

If you make less assignments than there are output variables, MATLAB will make only the first
assignments and the rest will be dropped. Try not to do this unless you specifically know that you want
the output value to be ignored.

TRY IT! Compute the function myTrigSum for a = 2 and b = 3. Assign the first output
argument to the variable C and drop the second output argument.

When writing functions, you may forget to assign one of the outputs if your function is complicated.
If this is the case, MATLAB will stop, and you will get an error. Consider the following erroneous code
where the output variable B is unassigned.

TRY IT! Run the previous erroneous code for the same inputs as in the previous example. Take
note of the reported error.
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Another useful keyword is return. When MATLAB sees a return statement, it immediately
terminates the function as if it had executed the end statement of the function. If any of the output
arguments have not been assigned when a return statement is made, you will get an error.

3.2 Function Workspace
Chapter 2 introduced the idea of the workspace where variables created at the command prompt are
stored. A function also has a workspace. A function workspace is a space in computer memory that
is reserved for variables created within that function. This workspace is not shared with the command
window’s workspace. Therefore, a variable with a given name can be assigned within a function without
changing a variable with the same name outside of the function. A function workspace is opened every
time a function is used.

TRY IT! What will the value of out be after the following lines of code are executed? Note that
it is not 6, which is the value out is assigned inside of myAdder.

InmyAdder, the variableout is a local variable. That is, it is only defined in the function workspace
of myAdder. Therefore, it cannot affect variables in workspaces outside of the function, and actions
taken in workspaces outside the function cannot affect it, even if they have the same name. So in
the previous example, there is a variable, out, defined in the command window workspace. When
myAdder is called on the next line, MATLAB opens a new workspace for that function’s variables.
One of the variables created in this workspace is another variable, out. However, since they have
different workspaces, the assignment to out inside myAdder does not change the value assigned to
out in the command window workspace.

This is one of the reasons it is dangerous to keep lines of code unsuppressed in your functions. We
modify the function myAdder so that it does not have a semicolon after the line out = a + b + c,
and has the extraneous command assigning the value 2 to the variable y (also unsuppressed).
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TIP! With the modified myAdder, what is the value of out after the following code is executed?

In the previous example, the value of out was displayed when the line out = a + b + c was
executed insidemyAdder. This means that the out variable being displayed is theout frommyAdder’s
workspace, not from the command window workspace where the out variable has value 1. Therefore,
the assignment to out inside the function did not affect the out variable on the outside. Likewise, the
variable y was created inside of the function workspace and is not an output variable. Therefore it does
not exist in the command prompt workspace. So for a final warning, be sure to suppress instructions
inside a function.

WARNING! If you intend to keep the function myAdder stored on your own computer, make
sure to return it to the correct, original configuration.

Why have separate function workspaces rather than a single workspace? Although it may seem like
a lot of trouble for MATLAB to separate workspaces, it is very efficient for large projects consisting
of many functions working together. If one programmer is responsible for making MATLAB’s sin
function, and another for making MATLAB’s cos function, we would not want each programmer
to have to worry about what variable names the other is using. We want them to be able to work
independently and be confident that their own work did not interfere with the other’s and vice versa.
Therefore, separate workspaces protect a function from outside influence. The only things from outside
the function’s workspace that can affect what happens inside a function are the input arguments, and
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the only things that can escape to the outside world from a function’s workspace when the function
terminates are the output arguments.

The next examples are designed to be exercises in function workspace. They are intentionally very
confusing, but if you can untangle them, then you probably understand function workspace. Focus on
exactly what MATLAB is doing, in the order that MATLAB does it.

EXAMPLE: Consider the following function:

TRY IT! What will the value of a, b, x, y, and z be after the following code is run?

TRY IT! What will the value of a, b, x, y, and z be after the following code is run?
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3.3 MATLAB®’s Path
When a function is called at the command prompt or from within a function, MATLAB must look for
the m-file that tells it how to execute that function. The way MATLAB looks for this function is through
the MATLAB path, which is the order in which MATLAB searches for a function when it is called.
When MATLAB is asked to execute a function, it first looks for that function in the working directory
or as a subfunction (described in the next section). If it is not in the working directory or a subfunction,
MATLAB will look in folders along the MATLAB path until it finds the appropriate m-file to execute.
If MATLAB gets to the end of the path without finding the requested function, it returns an error saying
that the requested function cannot be found.

TRY IT! Try to call the nonexistent function abcdefg for input value, 4, and assign the output
to the variable, a.

If there are two functions with the same name in MATLAB’s path, MATLAB will execute the
function first in the MATLAB path. Writing a function with the same name as another function and
placing it higher in the MATLAB path is called overloading a function. Overloading also refers to

FIGURE 3.2

The MATLAB path editor.
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giving variables the same name as functions you have written. Overloading is useful when you want to
do a task differently than normal during a particular project. For example, you may overload the sin
function with your own function that computes sin to 100 digits of accuracy. However, it is easy to
overload functions that you do not intend to, such as naming a function or variable gradient, which
is in fact a MATLAB function. Therefore, it is important to give your function a name that will most
likely be unique. In this book, we add the word “my” to the beginning of every function name to avoid
overloading any MATLAB functions.

You can view the MATLAB path by clicking File → Set Path. The path is shown in Figure 3.2. You
can modify the path under set MATLAB path. However, for our purpose we will never do this.

3.4 Subfunctions
Once you have created and saved a new function, it behaves just like any other MATLAB built-in
function. You can call the function from the command prompt, and any other function can call on the
function as well. A subfunction is a function that is defined in the same m-file as its parent function.
Only the parent function is able to call the subfunction. However, the subfunction retains a separate
workspace from its parent function. A subfunction is declared after the end statement of its parent
function, and it must have an end statement at the end of its own definition.

TRY IT! Consider the following function and subfunction saved in a single file called
myDistXYZ.m:
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Notice that the variables D, x, and y appear in both myDistXYZ and myDist. This is permissible
because a subfunction has a separate workspace from its parent function. Subfunctions are useful when
a task must be performed many times within the function but not outside the function. In this way,
subfunctions help the parent function perform its task without cluttering the working directory with
extra m-files.

TRY IT! Call the function myDistXYZ for x = [0 0], y = [0 1], z = [1 1]. Try
to call the subfunction myDist from the command prompt.

Following is the code repeated without using subfunctions. Notice how much busier and cluttered
the function looks and how much more difficult it is to understand what is going on. Also note that
this version is much more prone to mistakes because you have three chances to mistype the distance
formula. It is worth noting that this function could be written more compactly using vector operations.
We leave this as an exercise.
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Note that MATLAB will look through the list of subfunctions before it goes to the MATLAB path.
Therefore, if a subfunction overloads another function in the MATLAB path, the subfunction will take
precedence over that function when called by its parent function.

3.5 Function Handles
Up until now, you have assigned various data structures to variable names. Being able to assign a data
structure to a variable allows us to pass information to functions and get information back from them
in a neat and orderly way. Sometimes it is useful to be able to pass a function as a variable to another
function. In other words, the input to some functions may be other functions. To accomplish this, we
need function handles. Function handles are variables that have been assigned functions as their value.
A function handle is created by placing an @ symbol in front of a function in the current path and then
using the assignment operator.

TRY IT! Assign the function exp to the variable F. Verify that F has type function handle using
the class function.

In the previous example, F is now equivalent to the exp function. Just like x = 1 means that x and
1 are interchangeable, F and the exp function are now interchangeable.

TRY IT! Compute e2 using the function handleF. Verify that this is correct using theexp function.

TRY IT! Program a function called myFunPlusOne that takes a function handle, F, and a double
x as input arguments. myFunPlusOne should return F evaluated at x, and the result added to the
value 1. Verify that it works for various functions and values of x.
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Using function handles requires that the function being assigned to a variable be saved in the current
directory. An anonymous function is a function handle that is assigned to a function not stored. An
anonymous function is created according to the following construction.

CONSTRUCTION: Anonymous function declaration.

TRY IT! Create myAdder from the example in the functions section using anonymous function
handles. Use the variable F. Verify that F and myAdder behave the same for a = 1, b = 2, and
c = 3.

3.6 Script Files
A script file is an m-file that contains a sequence of instructions but is not a function. Unlike a function,
a script file shares its workspace with the current directory. A script file is created by writing lines of

code just as you would at the command prompt. A script file is run when you press the run button
in the top toolbar. When the script file is run, MATLAB executes the instructions in order as if you
typed them into the command prompt one at a time.

TRY IT! Write a script file that computes properties of a cylinder for a given radius and height.
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If you had a new cylinder, you could change r and h and rerun the script file to compute the new
properties.

WARNING! Script files share their workspace with the current directory, so be careful that variables
assigned in the script file are not overwriting other variables with the same name.

TIP! Always have a clc, clear all, and close all at the beginning of every script file.
This is because the script shares the workspace with the current directory, and it is good practice
to make sure that your script file is not using variables from old MATLAB sessions.

It is natural to wonder when a script file is more appropriate than a function or vice versa. Functions
are most useful when a task needs to be done many times. Script files are useful when you need to perform
a sequence of instructions only a few times in a highly context-specific situation. Some examples might
be producing a complicated plot or trying something new to see if it is worth writing a function for it.

You can organize code in script files into cells (not to be confused with cell arrays), which can be run
without running the rest of the script. This is not to be confused with cell arrays. A cell is a piece of script
code that can be run individually. Code cells can be created by double commenting, or using two %%. You

can execute a cell by clicking the evaluate-cell button or the evaluate-cell-and-advance button .

TRY IT! Organize the previous script file into cells. Execute the cells one at a time using cell
mode.
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You can turn cell mode off or on under Cell → Disable Cell Mode.

Summary
1. A function is a self-contained set of instructions designed to do a specific task.
2. A function has its own workspace for its variables. Information can be added to a function’s workspace

only through a function’s input variables. Information can leave the function’s workspace only
through a function’s output variables.

3. You can assign functions to variables using function handles.
4. A script is a sequence of instructions that are executed in order. Variables in script files are shared

with the working directory’s workspace.
5. You can build your own functions and scripts in the MATLAB editor.

Vocabulary
anonymous function function workspace path
body of the function input arguments run
cell keyword script file
comment local variable subfunction
editor m-file type definition
function output arguments user
function handle overload
function header parent function
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Functions and Operators
end return %%
function % @

Problems

1. Recall that the hyperbolic sine, denoted by sinh, is exp (x)−exp (−x)
2 . Write a function with header

[y] = mySinh(x), where y is the hyperbolic sine computed on x . Assume that x is a 1 × 1
double.

Test Cases:

2. Write a function with header [M] = myCheckerBoard(n), where M is an n × n matrix
with the following form:

M =

⎡
⎢⎢⎢⎢⎣

1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

⎤
⎥⎥⎥⎥⎦

Note that the upper-left element should always be 1. Assume that n is a strictly positive integer.

Test Cases:
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3. Write a function with header [A] = myTriangle(b,h) where A is the area of a triangle
with base, b, and height, h. Recall that the area of a triangle is one-half the base times the height.
Assume that b and h are 1 × 1 doubles.

Test Cases:

4. Write a function with header [M1,M2] = mySplitMatrix(M), where M is a matrix, M1
is the left half of M, and M2 is the right half of M. In the case where there is an odd number
of columns, the middle column should go to M1. Hint: The size and cell functions will be
useful for this. Assume that M has at least two columns.

Test Cases:
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5. Write a function with header [S,V] = myCylinder(r,h), where r and h are the radius
and height of a cylinder, respectively, and S and V are the surface area and volume of the same
cylinder, respectively. Recall that the surface area of a cylinder is 2πr2 +2πrh, and the volume
is πr2h. Assume that r and h are 1 × 1 doubles.

Test Cases:

6. Write a function with header [N] = myNOdds(A), where A is a one-dimensional array of
doubles and N is the number of odd numbers in A.

Test Cases:

7. Write a function with header [out] = myTwos(m,n), where out is an m × n matrix of
twos. Assume that m and n are strictly positive integers.
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Test Cases:

8. Write a function with header [S] = myAddString(S1,S2), where S is the concatenation
of the strings S1 and S2.

Test Cases:

9. Write a function that inputs a name, id, and grades, and generates a 1 × 1 struct array
newStudent. Use the function to populate a 1 × 5 array called student.

10. Generate the following errors:
function saved with incorrect name expects more input arguments.
output arguments not assigned

11. Write a function with header [G] = myGreeting(name,age), where name is a string,
age is a double, and G is the string 'Hi, my name is _ _ _ _ _ _ _ _ _ and I am
_ _ _ _ _ _ _ _ _ years old.' where _ _ _ _ _ _ _ _ are the input name and age, respec-
tively. Hint: Use sprintf. Assume that name is a string and age is an integer.

Test Cases:

12. Let r1 and r2 be the radius of circles with the same center and let r2>r1. Write a function
with header [A] = myDonutArea(r1,r2), where A is the area outside of the circle with
radius r1 and inside the circle with radius r2. Make sure that myDonutArea is vectorized.
Assume that r1 and r2 are row vectors of the same size.

Test Case:
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13. Write a function with header[indices] = myWithinTolerance(A, a, tol), where
indices is an array of the indices in A such that |A − a| < tol. Assume that A is a one-
dimensional double array and that a and tol are 1 × 1 doubles.

Test Cases:

14. Write a function with header[boundedA] = myBoundingArray(A, top, bottom),
where boundedA is equal to the array A wherever bottom < A < top, boundedA is equal
to bottom wherever A <= bottom, and boundedA is equal to top wherever A >= top.
Assume that A is a one-dimensional double array and that top and bottom are 1 × 1 doubles.

Test Cases:
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Motivation
When writing functions, it is very common to want certain parts of the function body to be executed
only under certain conditions. For example, if the input argument is odd, you may want the function
to perform one operation on it, and another if the input argument is even. This effect can be achieved
in MATLAB using branching statements (i.e., the execution of the function branches under certain
conditions), which are the topic of this chapter.

By the end of this chapter, you should be able to program branching statements into your functions
and scripts, which should substantially increase the scope of tasks for which you will be able to make
functions.

4.1 If-Else Statements
A branching statement, If-Else Statement, or If-Statement for short, is a code construct that executes
blocks of code only if certain conditions are met. These conditions are represented as logical expres-
sions. Let P, Q, and R be some logical expressions in MATLAB. The following shows an if-statement
construction.

CONSTRUCTION: Simple If-Else Statement Syntax

The word “if” is a keyword. An if-statement is ended by the keyword end. When MATLAB sees
an if-statement, it will determine if the associated logical expression is true. If it is true, then the code
An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00004-X
© 2015 Elsevier Inc. All rights reserved.
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in code block will be executed by MATLAB. If it is false, then the code in the if-statement will not
be executed. The way to read this is “If logical expression is true then do code block.”

When there are several conditions to consider you can include elseif-statements; if you want a
condition that covers any other case, then you can use an else statement.

CONSTRUCTION: Extended If-Else Statement Syntax

In the previous code, MATLAB will first check if P is true. If P is true, then code block 1 will
be executed, and then the if-statement will end. In other words, MATLAB will not check the rest of the
statements once it reaches a true statement. However, if P is false, then MATLAB will check if Q is true.
If Q is true, then code block 2 will be executed, and the if-statement will end. If it is false, then
R will be executed, and so forth. If P, Q, and R are all false, then code block 4 will be executed.
You can have any number of elseif statements (or none) as long as there is at least one if-statement (the
first statement). You do not need an else statement, but you can have at most one else statement. The
logical expressions after the if and elseif (i.e., such as P, Q, and R) will be referred to as conditional
statements.

TRY IT! Write a function with header [status] = myThermoStat(temp,
desiredTemp). The value of status should be the string ‘Heat’ if temp is less than desiredTemp
minus 5 degrees, ‘AC’ if temp is more than the desiredTemp plus 5, and ‘off’ otherwise.
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EXAMPLE: What will be the value of y after the following script is executed?

We can also insert more complicated conditional statements using logical operators.

EXAMPLE: What will be the value of y after the following code is executed?
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WARNING! Remember, if you want the logical statement a < x < b, this is two conditional
statements, a < x AND x < b. Typing a < x < b will have unexpected and undesirable
results.

A statement is called nested if it is entirely contained within another statement of the same type as
itself. For example, a nested if-statement is an if-statement that is entirely contained within a clause
of another if-statement.

EXAMPLE: Think about what will happen when the following code is executed. What are all the
possible outcomes based on the input values of x and y?

TIP! To help keep track of which code blocks belong under which conditional statement, MATLAB
gives the same level of indentation to every line of code within a conditional statement. As you write
code, you may find that the indentation becomes incorrect for whatever reason. You can indent
everything properly by pressing ctrl+a to select all your code and then ctrl+i to properly
indent on a PC, and command+a and command+i on a MAC. Be sure to use this sequence of
instructions on your code before presenting it to other people. It makes it much easier to read.
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EXAMPLE: Following is the code formyNestedBranchingwithout any indentation. Not only
is it not visually pleasing, but it also makes it much harder to understand the structure of the code.

TIP! When learning to program to it is natural write code from beginning to end, just the way
you write sentences. However, it is usually better to write complete if-statements first (all the
conditional statements) before beginning to fill in the code block sections. For example, when
writing an if-statement, write the “if” at the top, then the “end” at the bottom, then fill in the elseif
and else statements, then fill in the body of each individual statement. Although it is trivial for the
examples given in this chapter, coding in this order will help you keep track of your code when it
becomes more complicated (as it will later in the book).

EXAMPLE: The following shows a good order in which to type myNestedBranching.

Step 1: Declare the function header and comments.
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Step 2: Write main branching statement (outermost if-statement first).

Step 3: Fill in the code block for the first conditional statement (i.e., the nested if-statement).
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Step 4: Fill in the code block for the second conditional statement.

Writing code in this way will help you break down your task in a way that will help you program
it effectively.

There are many logical functions that are designed to help you build branching statements. For
example, you can ask if a variable has a certain data type or value with functions like isreal, isnan,
isinf, and isa. There are also functions that can tell you information about arrays of logicals like
any, which computes to true if any element in an array is true, and false otherwise, and all, which
computes to true only if all the elements in an array are true.

Sometimes you may want to design your function to check the inputs of a function to ensure that your
function will be used properly. For example, the function myAdder in the previous chapter expects
doubles as input. If the user inputs a struct or a char as one of the input variables, then the function
will throw an error or have unexpected results. To prevent this, you can put a check to tell the user
the function has not been used properly. This and other techniques for controlling errors are explored
further in Chapter 9. For the moment, you only need to know that the error function stops a function’s
execution and throws an error with the text in the input string. The error function takes sprintf
type inputs.
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EXAMPLE: Modify myAdder to throw an error if the user does not input doubles. Try your
function for nondouble inputs to show that the check works.

There is a large variety of erroneous inputs that your function may encounter from users, and it is
unreasonable to expect that your function will catch them all. Therefore, unless otherwise stated, write
your functions assuming the functions will be used properly.

The remainder of the section gives a few more examples of branching statements.

TRY IT! Write a function called isOdd that returns 'odd' if the input is odd and 'even' if it
is even. You can assume that in will be a positive integer.
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TRY IT! Write a function called myCircCalc that takes a double, r, and a string, calc as
input arguments. You may assume that r is positive, and that calc is either the string 'area'
or 'circumference'. The function myCircCalc should compute the area of a circle with
radius, r, if the string calc is 'area', and the circumference of a circle with radius, r, if calc
is 'circumference'. It will be helpful to use the MATLAB function strcmp. The function
should be vectorized for r.

Summary
1. Branching (if-else) statements allow functions to take different actions under different circumstances.

Vocabulary
branching statement if-statement nested if-statement
conditional statement nested
if-else statement

Functions and Operators
all Elsie isnan
any if isreal
ctrl+i isa
else isinf
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Problems
1. Write a function with header [tip] = myTipCalc(bill, party), where bill is the

total cost of a meal and party is the number of people in the group. The tip should be calculated
as 15% for a party strictly less than six people, 18% for a party strictly less than eight, 20% for
a party less than 11, and 25% for a party 11 or more.

Test Cases:

2. Write a function with header [f] = myMultOperation(a,b,operation). The input
argument, operation, is a string that is either 'plus', 'minus', 'mult', 'div', or
'pow', and f should be computed as a+b, a-b, a∗b, a/b, and aˆb for the respective values
for operation. Be sure to make your function vectorized. Hint: Use the strcmp function.

Test Cases:
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3. Consider a triangle with vertices at (0,0), (1,0), and (0,1). Write a function with header [S] =
myInsideTriangle(x,y)where S is the string 'outside' if the point (x,y) is outside
of the triangle, 'border' if the point is exactly on the border of the triangle, and 'inside'
if the point is on the inside of the triangle.

Test Cases:

4. Write a function with header [out] = myMakeSize10(x), where x is an array and out
is the first 10 elements of x if x has more than 10 elements, and out is the array x padded with
enough zeros to make it length 10 if x has less than 10 elements.

Test Cases:

5. Can you write myMakeSize10 without using if-statements (i.e., using only logical and array
operations)?

6. Write a function with header [grade] = myLetterGrader(percent), where grade is
the string 'A+' if percent is greater than 97, 'A' if percent is greater than 93, 'A-' if percent
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is greater than 90, 'B+' if percent is greater than 87, 'B' if percent is greater than 83, 'B-' if
percent is greater than 80, 'C+' if percent is greater than 77, 'C' if percent is greater than 73,
'C-' if percent is greater than 70, 'D+' if percent is greater than 67, 'D' if percent is greater
than 63, 'D-' if percent is greater than 60, and 'F' for any percent less than 60. Grades exactly
on the division should be included in the higher grade category.

Test Cases:

7. Most engineering systems have redundancy. That is, an engineering system has more than is
required to accomplish its purpose. Consider a nuclear reactor whose temperature is monitored
by three sensors. An alarm should go off if any two of the sensor readings disagree. Write
a function with header [response] = myNukeAlarm(S1,S2,S3) where S1, S2, and
S3 are the temperature readings for sensor 1, sensor 2, and sensor 3, respectively. The output
response should be the string 'alarm!' if any two of the temperature readings disagree by
strictly more than 10 degrees and 'normal' otherwise.

Test Cases:

8. Let Q(x) be the quadratic equation Q(x) = ax2 + bx + c for some scalar values a, b, and c. A
root of Q(x) is an r such that Q(r) = 0. The two roots of a quadratic equation can be described
by the quadratic formula, which is

r = −b ± √
b2 − 4ac

2a
.

A quadratic equation has either two real roots (i.e., b2 > 4ac), two imaginary roots (i.e.,
b2 < 4ac), or one root, r = − b

2a .
Write a function with header [nRoots, r] = myNRoots(a,b,c) where a, b, and c

are the coefficients of the quadratic Q(x), nRoots is 2 if Q has two real roots, 1 if Q has one
root, −2 if Q has two imaginary roots, and r is an array containing the roots of Q.
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Test Cases:

9. Write a function with header [h] = mySplitFunction(f,g,a,b,x), where f and g
are handles to functions f(x) and g(x), respectively. The output argument h should be f(x)
if x ≤ a, g(x) if x ≥ b, and 0 otherwise. You may assume that b > a.

Test Cases:
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Motivation
Many tasks in life are boring or tedious because they require doing the same basic actions over and over
again—iterating—in slightly different contexts. For example, consider looking up the definition of 20
words in the dictionary, populating a large table of numbers with data, alphabetizing many stacks of
paper, or dusting off every object and shelf in your room. Since repetitive tasks appear so frequently, it
is only natural that programming languages like MATLAB would have direct methods of performing
iteration.

This chapter teaches you how to program iterative tasks. With branching and iteration, it is possible
to program just about any task that you can imagine.

5.1 For-Loops
A for-loop is a sequence of instructions that is repeated, or iterated, for every value of a looping array.
The variable that holds the current value of the looping array is called looping variable. Sometimes
for-loops are referred to as definite loops because they have a predefined begin and end. The abstract
syntax of a for-loop block is as follows.

CONSTRUCTION: For-loop

A for-loop assigns the looping variable to the first element of the looping array. It executes everything
in the code block. Then it assigns the looping variable to the next element of the looping array and
An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00005-1
© 2015 Elsevier Inc. All rights reserved.
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executes the code block again. It continues this process until there are no more elements in the looping
array to assign.

TRY IT! What is the sum of every integer from 1 to 3?

WHAT IS HAPPENING? First, recall that 1:3 is the array [1 2 3].

1. The variable N is assigned the value 0.
2. The variable i is assigned the value 1 (the first element in the array [1:3]).
3. The variable N is assigned the value N + i (0 + 1 = 1).
4. The variable i is assigned the value 2.
5. The variable N is assigned the value N + i (1 + 2 = 3).
6. The variable i is assigned the value 3.
7. The variable N is assigned the value N + i (3 + 3 = 6).
8. With no more values to assign in the looping array, the for-loop is terminated with N = 6.

We present several more examples to give you a sense of how for-loops work, even though some of
these examples could be performed more concisely with array operations.

EXAMPLE: Given a one-dimensional array of strictly positive integers, A, add all the elements
of A. Recall that the length of an array can be determined by using the length function. You may
assume that A is defined in the current workspace.

Abstractly, i represents the index of A that we are adding to our total sum. S represents the sum of
the elements of A up to index i. For A = [4 1 2], go through the code step by step and note every
action executed by the computer.

The MATLAB function sum has already been written to handle the previous example. However,
assume you wish to add only the even numbers of an array. What would you add to the previous
for-loop block to handle this restriction?
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EXAMPLE: Given a one-dimensional array of strictly positive integers, A, add only the even
elements of A. You may assume that A is defined in the current workspace. Recall that a number is
even if it can be divided by 2 without remainder.

The remainder function, rem(a,b), returns the remainder of a number divided by b. The logical
statement if rem(A(i),2) == 0 asks “is the remainder of A(i) divided by 2 equal to 0?” If
the result is true, then A(i) is added to the total sum. If the result is false, then the code within the
if-statement is skipped. For A = [1 2 3 4 5], go through the code step by step and note every
action executed by the computer as in the previous example. What would you change in the code
so that only odd numbers in A are added? Hint: You can do it by adding only a single character.

EXAMPLE: Let the function anyEs have type S (string) → out (logical). The output variable,
out, should take the value 1 if there are any E’s in the input string, S, and 0 otherwise. Assume
every character in S is lowercase.

The first step in the function anyEs assumes that there are no E’s in S (i.e., the output is 0 or false).
This is not a trivial assumption, because we could just as easily have started out assuming that there
was an E in S (i.e., output is true). The reason it is easier to start out assuming that there are no E’s in S
is because if we ever find one, then we know our original assumption was wrong and the output should
be true and we can stop looking. However, if we start out assuming there is an E in S, then if we find a
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character that is not an E, it says nothing about whether or not our original assumption was true, and we
have to keep looking. As an exercise, try to rewrite anyEs starting with the assumption that there is an
E in S (out = 1). Was it easier or harder? Programming experience will help you determine which
assumptions will make your programming task easier. The program also uses the function strcmp,
which computes to 1 if the two input strings are the same and 0 otherwise.

Notice the new keyword break. If executed, the break keyword immediately stops the most
immediate for-loop that contains it; that is, if it is contained in a nested for-loop, then it will only stop
the innermost for-loop. In this particular case, the break command is executed if we ever find an E.
The code will still function properly without this statement, but since the task is to find out if there are
any E’s in S, we do not have to keep looking if we find one. Similarly, if a human was given the same
task for a long string of characters, that person would not continue looking for E’s if he or she already
found one. Break statements are used when anything happens in a for-loop that would make you want
it to stop early. A less intrusive command is the keyword continue, which skips the remaining code
in the current iteration of the for-loop, and continues on to the next element of the looping array.

TIP! It is generally good practice to label the end of a for-loop if it is many lines away from its
beginning. In the function anyEs, the end of the for-loops is labeled with the comment % end
for i. Additionally, it is often helpful to place a comment before the for-loop stating what the
for-loop index represents and what the for-loop does.

EXAMPLE: Let the function myDist2Points have header [d] = myDist2Points
(XY,xy). The input argument XY is a two-column array where each row denotes the x-y coor-
dinates of a point in Euclidean space, xy is a 1 × 2 array containing an x-y coordinate, and d is
an array containing the distances from xy to the points contained in each row of XY. Write the
function myDist2Points in MATLAB.
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WARNING! If you create this function and save it as an m-file, MATLAB will give you a warning
for the lined = [d, sqrt(sum((XY(i,:) - xy).ˆ2))]; by underlining it yellow. This
warning is given because the variable d is getting larger at every iteration of the for-loop, which,
due to reasons beyond the scope of this book, is very time consuming for the computer. For most
cases, the reduction in speed is not noticeable, but it can be a problem if it is done many times for
large data sets (on the order of tens of thousands). If you know what the length the array will be
when the for-loop finishes, you can save time by preallocating the elements of the array. That is,
you can set d to an array of the proper size with dummy values (usually 0) for every element. The
previous code is rewritten with d preallocated.

Just like if-statements, for-loops can be nested.

EXAMPLE: Let A be a two-dimensional matrix, [5 6; 7 8], defined in the current workspace. Use
a nested for-loop to sum all the elements in A. How would you adapt this code to handle A of
arbitrary size?
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WHAT IS HAPPENING?

1. S, representing the running total sum, is set to 0.
2. The outer for-loop begins with looping variable, i, set to 1.
3. Inner for-loop begins with looping variable, j, set to 1.
4. S is incremented by A(i,j) = A(1,1) = 5. So S = 5.
5. Inner for-loop sets j = 2.
6. S is incremented by A(i,j) = A(1,2) = 6. So S = 11.
7. Inner for-loop terminates.
8. Outer for-loop sets i = 2.
9. Inner for-loop begins with looping variable, j, set to 1.

10. S is incremented by A(i,j) = A(2,1) = 7. So S = 18.
11. Inner for-loop sets j = 2.
12. S is incremented by A(i,j) = A(2,2) = 8. So S = 26.
13. Inner for-loop terminates.
14. Outer for-loop terminates with S = 26.

WARNING! Although possible, do not try to change the looping variable inside of the for-loop.
It will make your code very complicated and will likely result in errors.

EXAMPLE: Find the sum of the squares of every number from 1 to 10. Two examples are given.
The first is improper. The second example is recommended.

Improper implementation:

Proper implementation:

TRY IT! In Chapter 3 we created the function myAdder, which adds three input scalars. Now
assume we are given a list of number triplets in the form of a three-column array, A (i.e., each row
in A is a triplet). The number of rows in the array will not be specified. Write a function with header
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[out] = myListAdder(A), where out is a single column where each element is the output
of myAdder for the corresponding row in A. Your function should call myAdder and use a single
for-loop.

5.2 Indefinite Loops
A while-loop or an indefinite loop is a set of instructions that is repeated as long as the associated
logical expression is true. The abstract syntax of a while loop block is the following:

CONSTRUCTION: While-loop

When MATLAB reaches a while-loop block, it first determines if the logical expression of the while-
loop is true or false. If the expression is true, then the code block will be executed. If the expression is
false, then the while-loop will terminate.

TRY IT! Determine the number of times 8 can be divided by 2 until the result is less than 1.
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WHAT IS HAPPENING?

1. First the variable n (running count of divisions of N by 2) is set to 0.
2. N is set to 8 and represents the current value we are dividing by 2.
3. The while-loop begins.
4. MATLAB computes N >= 1 or 8 >= 1, which is true so the code block is executed.
5. N is assigned N/2 = 8/2 = 4.
6. n is incremented to 1.
7. MATLAB computes N >= 1 or 4 >= 1, which is true so the code block is executed.
8. N is assigned N/2 = 4/2 = 2.
9. n is incremented to 2.

10. MATLAB computes N >= 1 or 2 >= 1, which is true so the code block is executed.
11. N is assigned N/2 = 2/2 = 1.
12. n is incremented to 3.
13. MATLAB computes N >= 1 or 1 >= 1, which is true so the code block is executed.
14. N is assigned N/2 = 1/2 = 0.5.
15. n is incremented to 4.
16. MATLAB computes N >= 1 or 0.5 >= 1, which is false so the while-loop ends with

n = 4.

TRY IT! A fun way to test the speed of your computer is to see how high it can count in one
second. Note that the function tic starts an internal timer in MATLAB. The function toc returns
the time in seconds since the last tic. As of the writing of this text, a typical PC laptop can count
to about 100,000, and a MAC can count to about a million. How high can a human get? Hopefully
this little test can give you a sense of how fast computers are compared to humans.

WHAT IS HAPPENING?

1. The variable N (current count) is set to 0.
2. The variable A timer is started using the tic function.
3. The while loop begins.
4. MATLAB computes the time since the last tic using the toc function.
5. MATLAB checks if the time is less than 1 second, which is probably true on the first iteration.
6. The variable N is incremented by 1.
7. MATLAB computes the time since the last tic using the toc function.
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8. MATLAB checks if the time is less than 1 second, which is probably true on the second iteration.
9. The variable N is incremented by 1.

10. . . .

11. This process is repeated until toc returns a time greater than 1 second.
12. The while loop ends with N as the final count.

You may have asked, “What if the logical expression is true and never changes?” and this is indeed
a very good question. If the logical expression is true, and nothing in the while-loop code changes
the expression, then the result is known as an infinite loop. Infinite loops run forever, or until your
computer breaks or runs out of memory.

EXAMPLE: Write a while-loop that causes an infinite loop.

Since N will always be bigger than −1 no matter how many times the loop is run, this code will
never end. Can you change a single character so that the while-loop will run at least once but will
not infinite loop?

Infinite loops are not always easy to spot. Consider the next two examples: one infinite loops
and one does not. Can you determine which is which? As your code becomes more complicated,
it will become harder to detect.

EXAMPLE: Which while-loop causes an infinite loop? Recall that therem(a,b) function returns
the remainder of a/b.
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Answer: The first example will not infinite loop because eventuallyNwill be so small that MATLAB
cannot tell the difference between N and 0. More on this in Chapter 8. The second example will
infinite loop because N will oscillate between 2 and 3 indefinitely.

What happens in the case of an infinite loop? Do you have to force MATLAB to shut down,
or restart your computer, or buy a new one? Fortunately MATLAB allows you to stop any code
by pressing ctrl+c. If you think your code is stuck in an infinite loop, or if you are just tired of
waiting for it to do its job, you can use this command to force your code to stop. An error will be
thrown at the line that was being executed when ctrl+c was executed.

Summary
1. Loops provide a mechanism for code to perform repetitive tasks; that is, iteration.
2. There are two kinds of loops: for-loops and while-loops.
3. Loops are important for constructing iterative solutions to problems.

Vocabulary
break indefinite loop preallocate
continue infinite loop while-loop
definite loop looping array
for-loop looping variable

Functions and Operators
break ctrl+c while
continue for

Problems

1. What will the value of y be after the following code is executed?
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2. Write a function with header [M] = myMax(A) where M is the maximum (largest) value in
A. Do not use the built-in MATLAB function max.

3. Write a function with header [M] = myNMax(A,N) where M is an array consisting of the N
largest elements of A. You may use MATLAB’s max function. You may also assume that N is
less than the length of M, that A is a one-dimensional array with no duplicate entries, and that N
is a strictly positive integer smaller than the length of A.

Test Case:

4. Let M be a matrix of positive integers. Write a function with header [Q] =
myTrigOddEven(M), where Q(i, j) = sin (M(i, j)) if M(i, j) is even, and Q(i, j) =
cos (M(i, j)) if M(i, j) is odd.

5. Let P be an m × p matrix and Q be a p × n matrix. As you will find later in this book,
M = P × Q is defined as M(i, j) = ∑p

k=1 P(i, k) · Q(k, j). Write a function with header
[M] = myMatMult(P,Q) that uses for-loops to compute M, the matrix product of P and Q.
Hint: You may need up to three nested for-loops.

Test Cases:

6. The interest, i , on a principle, P0, is a payment for allowing the bank to use your money.
Compound interest is accumulated according to the formula Pn = (1 + i)Pn−1, where n is the
compounding period, usually in months or years. Write a function with header [years] =
mySavingPlan(P0, i, goal) where years is the number of years it will take P0 to
become goal at i% interest compounded annually.
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Test Cases:

7. Write a function with header [ind] = myFind(B), where ind is an array of indices i
where B(i) is 1. You may assume that B is an array of only ones and zeros. Do not use the
built-in MATLAB function find.

8. Assume you are rolling two six-sided dice, each side having an equal chance of occurring.
Write a function with header [roll] = myMonopolyDice(), where roll is the sum of the
values of the two dice thrown but with the following extra rule: if the two dice rolls are the same,
then another roll is made, and the new sum added to the running total. If the two dice show 3
and 4, then the running total should be 7. If the two dice show 1 and 1, then the running total
should be 2 plus the total of another throw. Rolls stop when the dice rolls are different. Hint:
The line result = randi([1 6],2,1) is an accurate simulation of rolling two dice (See
Figure 5.1).

Test Cases:

9. A number is prime if it is divisible without remainder only by itself and 1. The number 1 is not
prime. Write a function with header [out] = myIsPrime(n), where out is 1 if n is prime
and 0 otherwise. Assume that n is a strictly positive integer.

10. Write a function with header [primes] = myNPrimes(N) where primes is a list of the
first N primes. Assume that N is a strictly positive integer.

11. Write a function with header [fibPrimes] = myNFibPrimes(N), where fibPrimes
is a list of the first N numbers that are both a Fibonacci number and prime. Note: 1 is not prime.
Hint: Do not use the recursive implementation of Fibonacci numbers. A function to compute
Fibonacci numbers is presented in Section 6.1. You may use the code freely.
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FIGURE 5.1

Note: Histogram may look slightly different based on your computer.

Test Cases:

12. Write a function with header [Q] = myTrigOddEven(M), where Q(i, j) =
sin (π/M(i, j)) if M(i,j) is odd, and Q(i, j) = cos (π/M(i, j)) if M(i,j) is even. Assume
that M is a two-dimensional matrix of strictly positive integers.

Test Cases:
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13. Let C be a square connectivity matrix containing zeros and ones. We say that point i has a
connection to point j , or i is connected to j , if C(i, j) = 1. Note that connections in this context
are one-directional, meaning C(i, j) is not necessarily the same as C( j, i). For example, think
of a one-way street from point A to point B. If A is connected to B, then B is not necessarily
connected to A.
Write a function with header [node] = myConnectivityMat2Struct(C, names),
where C is a connectivity matrix and names is a cell array of strings (i.e., each element of
names is a string) that denote the name of a point. That is, names(i) is the name of the i − th
point.
The output variable node should be a struct with fields .name and .neighbors. The i − th
element of node is defined as node(i).name = names(i) and node(i).neighbors
is a row vector containing the indices, j, such that C(i,j) = 1. In other words,
node(i).neighbors is a list of points that point i is connected to.
Warning: Make sure the field names are exactly correct: .name and .neighbors.

Test Cases:
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Motivation
Imagine that a CEO of a large company wants to know how many people work for him. One option is to
spend a tremendous amount of personal effort counting up the number of people on the payroll. However,
the CEO has other more important things to do, and so implements another, more clever, option. At the
next meeting with his department directors, he asks everyone to tell him at the next meeting how many
people work for them. Each director then meets with all their managers, who subsequently meet with
their supervisors who perform the same task. The supervisors know how many people work under them
and readily report this information back to their managers (plus one to count themselves), who relay
the aggregated information to the department directors, who relay the relevant information to the CEO.
In this way, the CEO accomplishes a difficult task (for himself) by delegating similar, but simpler, tasks
to his subordinates.

This method of solving difficult problems by breaking them up into simpler problems is naturally
modeled by recursive relationships, which are the topic of this chapter, and which form the basis of
important engineering problem-solving techniques. By the end of this chapter, you should be able to
recognize recursive relationships and program them using recursive functions.

6.1 Recursive Functions
A recursive function is a function that makes calls to itself. Although a recursive function is defined in
terms of itself, MATLAB opens a new workspace every time a function is called, even for a function
calling a function with the same name as itself.

In recursive functions, the base case is the mechanism that stops it from calling itself indefinitely.
The base case is usually an input value for which there is an easily verifiable solution. The recursive
step is the set of all cases where a recursive call, or a function call to itself, is made.
An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00006-3
© 2015 Elsevier Inc. All rights reserved.
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As an example, we show how recursion can be used to define and compute the factorial of an integer
number. The factorial of an integer number, n, is 1 × 2 × 3 × · · · × (n − 1) × n. The factorial function
can also be defined as n times the factorial of n − 1. This recursive definition can be written:

f (n) =
{

1 if n = 1
n × f (n − 1) otherwise

The base case is n = 1 for which the factorial is easy to compute: f (1) = 1. In the recursive step, n is
multiplied by the result of a recursive call to the factorial of n − 1.

TRY IT! Write the factorial function using recursion. Use your function to compute the factorial
of 3.

WHAT IS HAPPENING? First recall that when MATLAB executes a function, it creates a
workspace for the variables that are created in that function, and whenever a function calls another
function, it will wait until that function returns an answer before continuing. For example, in the
line » sin(tan(x)), sin must wait for tan to return an answer before it can be evaluated.
Even though a recursive function makes calls to itself, the same rules apply.

1. User makes call to myRecFactorial(3). A new workspace is opened to compute
myRecFactorial(3).
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2. Input argument value, 3, is compared to 1. Since they are not equal, else statement is executed.
3. 3*myRecFactorial(2) must be computed. A new workspace is opened to compute

myRecFactorial(2).
4. Input argument value, 2, is compared to 1. Since they are not equal, else statement is executed.
5. 2*myRecFactorial(1) must be computed. A new workspace is opened to compute

myRecFactorial(1).
6. Input argument value, 1, is compared to 1. Since they are equal, if statement is executed.
7. Output variable out is assigned the value 1. myRecFactorial(1) terminates with output 1.
8. 2*myRecFactorial(1) can be resolved to 2 ∗ 1 = 2. Output variable out is assigned the

value 2. myRecFactorial(2) terminates with output 2.
9. 3*myRecFactorial(2) can be resolved to 3 ∗ 2 = 6. Output variable out is assigned the

value 6. myRecFactorial(3) terminates with output 3 to user.

The order of recursive calls can be depicted by a recursion tree shown in Figure 6.1 for
myRecFactorial(3). A recursion tree is a diagram of the function calls connected by numbered
arrows to depict the order in which the calls were made.

Fibonacci numbers were originally developed to model the idealized population growth of rabbits.
Since then, they have been found to be significant in any naturally occurring phenomena. The Fibonacci
numbers can be generated using the following recursive formula. Note that the recursive step contains
two recursive calls and that there are also two base cases (i.e., two cases that cause the recursion to
stop).

F(n) =
⎧⎨
⎩

1 if n = 1
1 if n = 2

F(n − 1) + F(n − 2) otherwise

FIGURE 6.1

Recursion tree for myRecFactorial(3).
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TRY IT! Write a recursive function for computing the n-th Fibonacci number. Use your function
to compute the first five Fibonacci numbers. Draw the associated recursion tree (see Figure 6.2).

FIGURE 6.2

Recursion Tree for myRecFib(5).
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As an exercise, consider the following modification tomyRecFib, where the results of each recursive
call are displayed to the screen.

EXAMPLE: Modification for myRecFib. Can you determine the order in which the Fibonacci
numbers will appear on the screen for myRecFib(5)?

Notice that the number of recursive calls becomes very large for even relatively small inputs for n.
If you do not agree, try to draw the recursion tree for myRecFib(10). If you try your unmodified
function for inputs around 25, you will notice significant computation times.

Every time a recursive call is made, MATLAB must create a new workspace for it, and all the
current workspaces must be retained inside MATLAB’s memory. If MATLAB runs out of memory,
then it will crash (i.e., stop working and close down). To prevent this from happening, MATLAB
has a recursion limit that restricts the number of workspaces that can be created by a recursive
function. The default recursion limit is 500. You can increase this limit to N using the command
set(0,'RecursionLimit',N). However doing so is not advisable unless absolutely necessary.
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TRY IT! Run the unmodified myRecFib for n = 501.

There is an iterative method of computing the n-th Fibonacci number that requires only one workspace.

EXAMPLE: Iterative implementation for computing Fibonacci numbers.

TRY IT! Write a script to compute the 25-th Fibonacci number using myIterFib and
myRecFib. Use the tic and toc functions to measure the run time of each function. Notice
the large difference in running times.
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You can see in the previous example that the iterative version runs much faster than the recursive
counterpart. In general, iterative functions are faster than recursive functions that perform the same task.
So why use recursive functions at all? There are some solution methods that have a naturally recursive
structure. In these cases it is usually very hard to write a counterpart using loops. The primary value
of writing recursive functions is that they can usually be written much more compactly than iterative
functions. The cost of the improved compactness is added running time.

The relationship between the input arguments and the running time is discussed in more detail in
Chapter 7 on Complexity.

TIP! Try to write functions iteratively whenever it is convenient to do so. Your functions will run
faster.

6.2 Divide and Conquer
Divide and conquer is a useful strategy for solving difficult problems. Using divide and conquer, diffi-
cult problems are solved from solutions to many similar easy problems. In this way, difficult problems
are broken up so they are more manageable. In this section, we cover two classical examples of divide
and conquer: the Towers of Hanoi Problem and the Quicksort algorithm.

Towers of Hanoi
The Towers of Hanoi problem consists of three vertical rods, or towers, and N disks of different sizes,
each with a hole in the center so that the rod can slide through it. The disks are originally stacked on
one of the towers in order of descending size (i.e., the largest disc is on the bottom). The goal of the
problem is to move all the disks to a different rod while complying with the following three rules:

1. Only one disk can be moved at a time.
2. Only the disk at the top of a stack may be moved.
3. A disk may not be placed on top of a smaller disk.

Figure 6.3 shows the steps of the solution to the Towers of Hanoi problem with three disks.
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FIGURE 6.3

Illustration of the Towers of Hanoi: In eight steps, all disks are transported from pole 1 to pole 3, one at a
time, by moving only the disk at the top of the current stack, and placing only smaller disks on top of larger
disks.

FIGURE 6.4

Breakdown of one iteration of the recursive solution of the Towers of Hanoi problem.

A legend goes that a group of Indian monks are in a monastery working to complete a Towers of
Hanoi problem with 64 disks. When they complete the problem, the world will end. Fortunately, the
number of moves required is 264 − 1 so even if they could move one disk per millisecond, it would take
over 584 million years for them to finish.

The key to the Towers of Hanoi problem is breaking it down into smaller, easier-to-manage problems
that we will refer to as subproblems. For this problem, it is relatively easy to see that moving a disk is
easy (which has only three rules) but moving a tower is difficult (we cannot immediately see how to do
it). So we will assign moving a stack of size N to several subproblems of moving a stack of size N − 1.

Consider a stack of N disks that we wish to move from Tower 1 to Tower 3, and let myTower(N)
move a stack of size N to the desired tower (i.e., display the moves). How to write myTower may not
immediately be clear. However, if we think about the problem in terms of subproblems, we can see
that we need to move the top N-1 disks to the middle tower, then the bottom disk to the right tower,
and then the N-1 disks on the middle tower to the right tower. myTower can display the instruction to
move disk N, and then make recursive calls to myTower(N-1) to handle moving the smaller towers.
The calls to myTower(N-1) make recursive calls to myTower(N-2) and so on. A breakdown of
the three steps is depicted in Figure 6.4.

Following is a recursive solution to the Towers of Hanoi problem. Notice its compactness and
simplicity. The code exactly reflects our intuition about the recursive nature of the solution: First we
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move a stack of size N-1 from the original tower ‘from’ to the alternative tower ‘alt’. This is a difficult
task, so instead we make a recursive call that will make subsequent recursive calls, but will, in the end,
move the stack as desired. Then we move the bottom disk to the target tower ‘to’. Finally, we move the
stack of size N-1 to the target tower by making another recursive call.

TRY IT! Use the function myTowers to solve the Towers of Hanoi Problem for N = 3. Verify
that the solution is correct by inspection.

By using Divide and Conquer, we have solved the Towers of Hanoi problem by making recursive
calls to slightly smaller Towers of Hanoi problems that, in turn, make recursive calls to yet smaller
Towers of Hanoi problems. Together, the solutions form the solution to the whole problem. The actual
work done by a single function call is actually quite small: two recursive calls and moving one disk. In
other words, a function call does very little work (moving a disk), and then passes the rest of the work
onto other calls, a skill you will probably find very useful throughout your engineering career.
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QuickSort
An array of numbers, A, is sorted if the elements are arranged in ascending or descending order.
Although there are many ways of sorting a list, quicksort is a divide-and-conquer approach that is a very
fast algorithm for sorting using a single processor (there are faster algorithms for multiple processors).

The quicksort algorithm starts with the observation that sorting a list is hard, but comparison is easy.
So instead of sorting a list, we separate the array by comparing to a pivot. At each recursive call to
quicksort, the input array is divided into three parts: elements that are smaller than the pivot, elements
that are equal to the pivot, and elements that are larger than the pivot. Then a recursive call to quicksort
is made on the two subproblems: the array of elements smaller than the pivot and the array of elements
larger than the pivot. Eventually the subproblems are small enough (i.e., array size of length 1 or 0) that
sorting the list is trivial.

Consider the following recursive implementation of quicksort.

Similarly to Towers of Hanoi, we have broken up the problem of sorting (hard) into many comparisons
(easy).
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Summary
1. A recursive function is a function that calls itself.
2. Recursive functions are useful when problems have a hierarchical structure rather than an iterative

structure.
3. Divide and Conquer is a powerful problem-solving strategy that can be used to solve difficult prob-

lems.

Vocabulary
base case recursive step sorted
Divide and Conquer recursion tree subproblem
recursive function

Functions and Operators
none

Problems
1. Write a function with header [S] = mySum(A) where A is a one-dimensional array, and S

is the sum of all the elements of A. You can use recursion or iteration to solve the problem, but
do not use MATLAB’s function sum.

Test Cases:

2. Chebyshev polynomials are defined recursively. Chebyshev polynomials are separated into two
kinds: first and second. Chebyshev polynomials of the first kind, Tn(x), and of the second kind,
Un(x), are defined by the following recurrence relations:

Tn(x) =
⎧⎨
⎩

1 if n = 0
x if n = 1

2xTn−1(x) − Tn−2(x) otherwise



106 CHAPTER 6 Recursion

Un(x) =
⎧⎨
⎩

1 if n = 0
2x if n = 1

2xUn−1(x) − Un−2(x) otherwise

Write a function with header [y] = myChebyshevPoly1(n,x), where y is the n-th
Chebyshev polynomial of the first kind evaluated atx. Be sure your function can take array inputs
for x. You may assume that x is a row vector. The output variable, y, must be a row vector also.

Test Cases:

Try plotting your Chebyshev polynomials of various orders for x = 0:.01:5 if you are
interested in seeing what they looking like.

3. The Ackermann function, A, is a quickly growing function that is defined by the recursive
relationship:

A(m, n) =
⎧⎨
⎩

n + 1 if m = 0
A(m − 1, 1) if m > 0and n = 1

A(m − 1, A(m, n − 1)) if m > 0and n > 0

Write a function with header [A] = myAckermann(m,n), where A is the Ackermann func-
tion computed for m and n.

Test Cases:
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myAckermann(4,4) is so large that it would be difficult to write down. Although the Acker-
mann function does not have many practical uses, the inverse Ackermann function has several
uses in robotic motion planning.

4. A function, C(n, k), which computes the number of different ways of uniquely choosing k
objects from n without repetition, is commonly used in many statistics applications. For exam-
ple, how many three-flavored ice cream sundaes are there if there are 10 icecream flavors? To
solve this problem we would have to compute C(10, 3), the number of ways of choosing three
unique icecream flavors from 10. The function C is commonly called “n choose k.” You may
assume that n and k are 1 × 1 integer doubles.
If n = k, then clearly C(n, k) = 1 because there is only way to choose n objects from n objects.
If k = 1, then C(n, k) = n because choosing each of the n objects is a way of choosing one
object from n. For all other cases, C(n, k) = C(n − 1, k) + C(n − 1, k − 1). Can you see why?
Write a function with header [N] = myNChooseK(n,k) that computes the number of times
k objects can be uniquely chosen from n objects without repetition.

Test Cases:

5. In purchases paid in cash, the seller must return money that was overpaid. This is commonly
referred to as “giving change.” The bills and coins required to properly give change can be
defined by a recursive relationship. If the amount paid is more than $100 more than the cost,
then return a hundred-dollar bill along with the result of a recursive call to the change func-
tion with $100 subtracted from the amount paid. If the amount paid is more than $50 over
the cost of the item, then return a fifty-dollar bill, along with the result of a recursive call
to the change function with $50 subtracted. Similar clauses can be given for every denom-
ination of US currency. The denominations of US currency, in dollars, is 100, 50, 20, 10,
5, 1, 0.25, 0.10, 0.05, and 0.01. For this problem we will ignore the two-dollar bill, which
is not in common circulation. You may assume that cost and paid are scalars, and that
paid >= cost . The output variable, change, must be a column vector as shown in the
test case.
Use recursion to program a function with header [change] = myChange(cost, paid)
where cost is the cost of the item, paid is the amount paid, and change is an array con-
taining the list of bills and coins that should be returned to the seller. Note: Watch out for the
base case!
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Test Cases:

6. The golden ratio, φ, is the limit of F(n+1)
F(n)

as n goes to infinity and F(n) is the n-th Fibonacci

number, which can be shown to be exactly 1+√
5

2 and is approximately 1.62. We say that

G(n) = F(n+1)
F(n)

is the n-th approximation of the golden ratio, and G(1) = 1.

It can be shown that φ is also the limit of the continued fraction:

ϕ = 1 + 1

1 + 1

1 + 1

1 + . . .

.

Write a recursive function with header [G] = myGoldenRatio(n), where G is the n-th
approximation of the golden ratio according to the continued fraction recursive relationship.
You should use the continued fraction approximation for the Golden ratio, not the G(n) =
F(n + 1)/F(n) definition. However for both definitions, G(1) = 1.

Test Cases:

Studies have shown that rectangles with aspect ratio (i.e., length divided by width) close to the
golden ratio are more pleasing than rectangles that do not. What is the aspect ratio of many
wide-screen TV’s and movie screens?

7. The greatest common divisor of two integers a and b is the largest integer that divides both
numbers without remainder, and the function to compute it is denoted by GCD(a,b). The
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GCD function can be written recursively. If b equals 0, then a is the greatest common divisor.
Otherwise, GCD(a,b) = GCD(b, rem(a,b)) where rem(a,b) is the remainder of a
divided by b. Assume that a and b are 1 × 1 integer doubles.
Write a recursive function with header [gcd] = myGCD(a,b) that computes the greatest
common divisor of a and b. Assume that a and b are 1 × 1 integer doubles.

Test Cases:

8. Pascal’s triangle is an arrangement of numbers such that each row is equivalent to the coefficients
of the binomial expansion of (x + y)(p−1), where p is some positive integer more than or equal
to 1. For example, (x + y)2 = 1x2 + 2xy + 1y2 so the third row of Pascal’s triangle is 1 2 1.
Let Rm represent the m-th row of Pascal’s triangle, and Rm(n) be the n-th element of the row. By
definition, Rm has m elements, and Rm(1) = Rm(n) = 1. The remaining elements are computed
by the following recursive relationship: Rm(i) = Rm−1(i −1)+ Rm−1(i) for i = 2, . . . , m −1.
The first few rows of Pascal’s triangle are depicted in the following figure. You may assume that
m is a strictly positive integer. The output variable, row, must be a row vector.

Write a function with header [row] = myPascalRow(m) where row is the m-th row of
the Pascal triangle. You may assume that m is a strictly positive integer.

Test Cases:
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9. Consider a n × n matrix of the following form:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1

1 0 0 0 0

1 0 1 1 0

1 0 0 1 0

1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where the ones form a right spiral. Write a function with header [A] = mySpiralOnes(n)
that produces an n × n matrix of the given form. Take care that the recursive steps are in the
correct order (i.e., the ones go right, then down, then left, then up, then right, etc.).

Test Cases:
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10. Rewrite mySpiralOnes without using recursion.

11. Write a line of code that produces the following error:

12. Draw the recursion tree for myTowers(4).
13. Rewrite the Towers of Hanoi function in this chapter without using recursion.

14. Draw the recursion tree for myQuickSort([5 4 6 2 9 1 7 3]).
15. Rewrite the quicksort function in this chapter without using recursion.
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Motivation
Once you have programmed a solution to a problem, an important question is “How long is my program
going to run?” Clearly the answer to this question depends on many factors, such as the computer
memory, the computer speed, and the size of the problem. For example, if your function sums every
element of a very large array, the time to complete the task will depend on whether your computer can
hold the entire array in its memory at once, how fast your computer can do additions, and the size of
the array.

The effort required to run a program to completion is the notion of “complexity,” and it is the topic
of this chapter. By the end of this chapter, you should be able to estimate the complexity of simple
programs and identify poor complexity properties when you see them.

7.1 Complexity and Big-O Notation
The complexity of a function is the relationship between the size of the input and the difficulty of
running the function to completion. The size of the input is usually denoted by n. In computer science,
this is usually taken to be the number of bits required to describe the problem. However, n usually
describes something more tangible, such as the length of an array. The difficulty of a problem can be
measured in several ways. It can be measured by the number of bit operations needed for the function
to finish, which means the number of times a 1 must be turned to a 0 and vice versa, as well as a few
other simple things that computers can do. It is usually more suitable to describe the difficulty of the
problem in terms of basic operations: additions, subtractions, multiplications, divisions, assignments,
and function calls. Although each basic operation takes different amounts of time, the number of basic
operations needed to complete a function is sufficiently related to the running time to be useful, and it
is much easier to count.
An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00007-5
© 2015 Elsevier Inc. All rights reserved.
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TRY IT! Count the number of basic operations, in terms of n, required for the following function
to terminate.

additions: n2, subtractions: 0, multiplications: n2, divisions: 0, assignments: 2n2 +1, function calls:
0, total: 4n2 + 1.

The number of assignments is 2n2 + n + 1 because the line out = out + i*j is evaluated
n2 times, j is assigned n2, i is assigned n times, and the line out = 0 is assigned once. So, the
complexity of the function f can be described as 4n2 + n + 1.

A common notation for complexity is called Big-O notation. Big-O notation establishes the rela-
tionship in the growth of the number of basic operations with respect to the size of the input as the input
size becomes very large. As n gets large, the highest power dominates; therefore, only the highest power
term is included in Big-O notation. Additionally, coefficients are not required to characterize growth,
and so coefficients are also dropped. In the previous example, we counted 4n2 + n + 1 basic operations
to complete the function. In Big-O notation we would say that the function is O(n2) (pronounced “O of
n-squared”). We say that any algorithm with complexity O(nc) where c is some constant with respect
to n is polynomial time.

TRY IT! Determine the complexity of the iterative Fibonacci function in Big-O notation.

Since the only lines of code that take more time as n grows are those in the for-loop, we can restrict
our attention to the for-loop and the code block within it. The code within the for-loop does not
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grow with respect to n (i.e., it is constant). Therefore, the number of basic operations is Cn where
C is some constant representing the number of basic operations that occur in the for-loop, and these
C operations run n times. This gives a complexity of O(n) for myFibIter.

Assessing the exact complexity of a function can be difficult. In these cases, it might be sufficient to
give an upper bound or even an approximation of the complexity.

TRY IT! Give an upper bound on the complexity of the recursive implementation of Fibonacci.
Do you think it is a good approximation of the upper bound? Do you think that recursive Fibonacci
could possibly be polynomial time?

As n gets large, we can say that the vast majority of function calls make two other function calls:
one addition and one assignment to the output. The addition and assignment do not grow with n
per function call, so we can ignore them in Big-O notation. However, the number of function calls
grows approximately by 2n , and so the complexity of myFibRec is upper bound by O(2n).

There is on-going debate whether or not O(2n) is a good approximation for the Fibonacci
function.

Since the number of recursive calls grows exponentially with n, there is no way the recursive
fibonacci function could be polynomial. That is, for any c, there is an n such that myFibRec takes
more than O(nc) basic operations to complete. Any function that is O(cn) for some constant c is
said to be exponential time.

TRY IT! What is the complexity of the following function in Big-O notation?
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Again, only the while-loop runs longer for larger n so we can restrict our attention there. Within
the while-loop, there are two assignments: one division and one addition, which are both constant
time with respect to n. So the complexity depends only on how many times the while-loop runs.
The while-loop cuts n in half in every iteration until n is less than 1. So the number of iterations,
I , is the solution to the equation n

2I = 1. With some manipulation, this solves to I = log n, so
the complexity of myDivideByTwo is O( log n). It does not matter what the base of the log
is because, recalling log rules, all logs are a scalar multiple of each other. Any function with
complexity O( log n). is said to be log time.

7.2 Complexity Matters
So why does complexity matter? Assume you have an algorithm that runs in exponential time, say O(2n),
and let N be the largest problem you can solve with this algorithm using the computational resources
you have, denoted by R. R could be the amount of time you are willing to wait for the function to finish,
or R could be the number of basic operations you watch the computer execute before you get sick of
waiting. Using the same algorithm, how large of a problem can you solve given a new computer that is
twice as fast?

If we establish R = 2N , using our old computer, with our new computer we have 2R computational
resources; therefore, we want to find N ′ such that 2R = 2N ′

. With some substitution, we can arrive at
2 × 2N = 2N ′ → 2N+1 = 2N ′ → N ′ = N + 1. So with an exponential time algorithm, doubling your
computational resources will allow you to solve a problem one unit larger than you could with your old
computer. This is a very small difference. In fact as N gets large, the relative improvement goes to 0.

With a polynomial time algorithm, you can do much better. This time let’s assume that R = N c,
where c is some constant larger than one. Then 2R = N ′c, which using similar substitutions as before
gets you to N ′ = 21/c N . So with a polynomial time algorithm with power c, you can solve a problem
c
√

2 larger than you could with your old computer. When c is small, say less than 5, this is a much bigger
difference than with the exponential algorithm.

Finally, let us consider a log time algorithm. Let R = log N . Then 2R = log N ′, and again with
some substitution we obtain N ′ = N 2. So with the double resources, we can square the size of the
problem we can solve!

The moral of the story is that exponential time algorithms do not scale well. That is, as you increase
the size of the input, you will soon find that the function takes longer (much longer) than you are willing
to wait. For one final example, myFibRec(100) would take on the order 2100 basic operations
to perform. If your computer could do 100 trillion basic operations per second (far faster than the
fastest computer on earth), it would take your computer about 400 million years to complete. However,
myFibIter(100) would take less than 1 nanosecond.

There is both an exponential time algorithm (recursion) and a polynomial time algorithm (iteration)
for computing Fibonacci numbers. Given a choice, we would clearly pick the polynomial time algorithm.
However, there is a class of problems for which no one has ever discovered a polynomial time algorithm.
In other words, there are only exponential time algorithms known for them. These problems are known
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as NP-Complete, and there is ongoing investigation as to whether polynomial time algorithms exist for
these problems. Examples of NP-Complete problems include the Traveling Salesman, Set Cover, and
Set Packing problems. Although theoretical in construction, solutions to these problems have numerous
applications in logistics and operations research. In fact, some encryption algorithms that keep web
and bank applications secure rely on the NP-Complete-ness of breaking them. A further discussion
of NP-Complete problems and the theory of complexity is beyond the scope of this book but these
problems are very interesting and important to many engineering applications.

7.3 The Profiler
Even if it does not change the Big-O complexity of a program, many programmers will spend long hours
to make their code run twice as fast or to gain even smaller improvements. The MATLAB Profiler is a
useful tool for improving the performance of your programs. You can open the Profiler under Desktop
→ Profiler.

TRY IT! Consider the following script, ProfilerTest.m, that sums random numbers over and
over again. Run ProfilerTest.m in the Profiler.

You can run your code in the Profiler by typing into the box next to “Run this code” as if it were
at the command window. You can execute the code by pressing Enter (PC) or Return (Mac).
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FIGURE 7.1

Profiler overall results.

FIGURE 7.2

Profiler results for ProfilerTest.m.
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Click on the ProfilerTest link (see Figure 7.1; first in the list) and you will be taken to a
breakdown of the time spent on each line in ProfilerTest.m. You can see (Figure 7.2) that
most of the time is spent on the line S = S + A(j) and for driving the for-loop (for-loop end
statement).

You can almost always improve the performance of your program by using a MATLAB function
that accomplishes the same thing. In this case, the MATLAB function sum does the same task as
the inner for-loop in ProfilerTest.m.

TIP! Use MATLAB built-in functions whenever possible (i.e., sum, sqrt, find, etc.).

TRY IT! Replace the inner for-loop in ProfilerTest.m with the sum function. Run the
modified script in the Profiler.
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FIGURE 7.3

Improved profiler results for ProfilerTest.m.

As you can see in Figure 7.3, the overall performance of the code has been significantly improved.

Usually when code takes longer to run than you would like, there is a bottleneck where much of
the time is being spent. That is, there is a line of code that is taking much longer to execute than the
other lines in the program. Addressing the bottleneck in a program will usually lead to the biggest
improvement in performance, even if there are other areas of your code that are more easily improved.

TIP! Start at the bottleneck when improving the performance of code.

Summary
1. The complexity of an algorithm is the relationship between the size of the input problem and the

time it takes the algorithm to terminate.
2. Big-O notation is a standard method of classifying algorithmic complexity in a way that is computer-

and operating-system-independent.
3. Algorithms with log complexity are faster than algorithms with polynomial complexity, which are

faster than algorithms with exponential complexity.
4. The Profiler is a useful MATLAB tool for determining where your code is running slowly so that

you can improve its performance.
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Vocabulary
basic operation bottleneck polynomial time
Big-O notation complexity Profiler
bit operation exponential time

Functions and Operators
bin2dec dec2bin
eps

Problems

1. How would you define the size of the following tasks?

1. Solving a jigsaw puzzle.
2. Passing a handout to a class.
3. Walking to class.
4. Finding a name in dictionary.

2. For the tasks given in the previous problem, what would you say is the Big-O complexity of the
tasks in terms of the size definitions you gave?

3. You may be surprised to know that there is a log time algorithm for finding a word in an n-word
dictionary. Instead of starting at the beginning of the list, you go to the middle. If this is the
word you are looking for then you are done. If the word comes after the word you are looking
for, then look halfway between the current word and the end. If it is before the word you are
looking for, then look halfway between the first word and the current word. Keep repeating this
process until you find the word. This algorithm is known as a binary search, and it is log time
because the search space is cut in half at each iteration, and therefore, requires at most log2 (n)

iterations to find the word. Hence the increase in run time is only log in the length of the list.
There is a way to look up a word in O(1) or constant time. This means that no matter how long
the list is, it takes the same amount of time! Can you think of how this is done? Hint: Research
hash functions.

4. What is the complexity of the algorithms that compute the following recursive relationships?
Classify the following algorithms as log time, polynomial time, or exponential time in terms of
n given that the implementation is (a) recursive, and (b) iterative.

Tribonacci, T (n):

T (n) = T (n − 1) + T (n − 2) + T (n − 3)

T (1) = T (2) = T (3) = 1.
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Timmynacci, t(n):

t(n) = t(n/2) + t(n/4)

t(n) = 1 if n < 1.

5. What is the Big-O complexity of the Towers of Hanoi problem given in Chapter 7? Is the
complexity an upper bound or is it exact?

6. What is the Big-O complexity of the quicksort algorithm?
7. Run the following two iterative implementations of finding Fibonacci numbers in the MATLAB

Profiler. The first implementation preallocates memory to an array that stores all the Fibonacci
numbers. The second implementation expands the array at each iteration of the for-loop.

Which function runs faster for n = 100?
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Motivation
There are many ways of representing or writing numbers. For example, decimal numbers, Roman
numerals, scientific notation, and even tally marks are all ways of representing numbers
(Figure 8.1).

Mathematics has infinite precision when describing numbers. For example,
√

2 is precisely the
number such that when you square it, the result is 2, the exact decimal representation of which requires
an infinite number of digits. This presents a significant problem for computers, since they only have a
limited amount of space to store numbers, and they cannot understand abstract notations of representing
numbers more compactly.

In this chapter, you will learn about different representation of numbers and how they are useful
for computers. By the end of the chapter, you should know and understand some representations of
numbers that are used in computing, how to convert between them and decimal numbers, and their
primary advantages and disadvantages.

FIGURE 8.1

Various representations of the number 13. (left to right) Base10, scientific notation, Roman numerals, tally
marks, and binary.

An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00008-7
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8.1 Base-N and Binary
The decimal system is a way of representing numbers that you are familiar with from elementary
school. In the decimal system, a number is represented by a list of digits from 0 to 9, where each digit
represents the coefficient for a power of 10.

EXAMPLE: Show the decimal expansion for 147.3.

147.3 = 1 · 102 + 4 · 101 + 7 · 100 + 3 · 10−1.

Since each digit is associated with a power of 10, the decimal system is also known as base10 because
it is based on 10 digits (0 to 9). However, there is nothing special about base10 numbers except perhaps
that you are more accustomed to using them. For example, in base3 we have the digits 0, 1, and 2 and
the number 121(base 3) = 1 · 32 + 2 · 31 + 1 · 30 = 9 + 6 + 1 = 16(base 10).

For the purposes of this chapter, it is useful to denote which representation a number is in. Therefore
in this chapter, every number will be followed by its representation in parentheses (e.g., 11 (base10)
means 11 in base10) unless the context is clear.

A very important representation of numbers for computers is base2 or binary numbers. In binary,
the only available digits are 0 and 1, and each digit is the coefficient of a power of 2. Digits in a
binary number are also known as a bit. Note that binary numbers are still numbers, and so addition and
multiplication are defined on them exactly as you learned in grade school.

TRY IT! Convert the number 11 (base10) into binary.
11(base10) = 8 + 2 + 1 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 1011(base2)

TRY IT! Convert 37 (base10) and 17 (base10) to binary. Add and multiply the resulting numbers
in binary. Verify that the result is correct in base10.
Convert to binary: 37 (base10) = 32 + 4 + 1 = 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 =
100101 (base2) 17 (base10) = 16 + 1 = 1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = 10001 (base2)

Get results of addition and multiplication in decimal:
37 + 17 = 54
37 × 17 = 629
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Do addition in binary:

Do multiplication in binary:
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Binary numbers are useful for computers because arithmetic operations on the digits 0 and 1 can be
represented using AND, OR, and NOT, which computers can do extremely fast.

Unlike humans that can abstract numbers to arbitrarily large values, computers have a fixed number
of bits that they are capable of storing at one time. For example, a 32-bit computer can represent
and process 32-digit binary numbers and no more. If all 32-bits are used to represent positive integer
binary numbers, then this means that there are

∑31
n=0 2n = 4, 294, 967, 296 numbers the computer can

represent. This is not very many numbers at all and would be completely insufficient to do any useful
arithmetic on. For example, you could not compute the perfectly reasonable sum 0.5 + 1.25 using this
representation because all the bits are dedicated to only positive integers.

8.2 Floating Point Numbers
The number of bits is usually fixed for any given computer. Using binary representation gives us an
insufficient range and precision of numbers to do relevant engineering calculations. To achieve the
range of values needed with the same number of bits, we use floating point numbers or float for short.
There are two kinds of floats: single precision (32 bits) and double precision (64 bits). MATLAB’s
standard arithmetic uses double precision, but this section uses single precision to illustrate the concept
of floating point numbers (to save space). Instead of utilizing each bit as the coefficient of a power of
2, floats allocate bits to three different parts: the sign indicator, s, which says whether a number is
positive or negative; characteristic or exponent, e, which is the power of 2; and the fraction, f , which
is the coefficient of the exponent. In the IEEE754 standard for single precision, 1 bit is allocated to
the sign indicator, 8 bits are allocated to the exponent, and 23 bits are allocated to the fraction. With
8 bits allocated to the exponent, this makes 256 values that this number can take. Since we want to be
able to make very precise numbers, we want some of these values to represent negative exponents (i.e.,
to allow numbers that are between 0 and 1 (base10)). To accomplish this, 127 is subtracted from the
exponent to normalize it. The value subtracted from the exponent is commonly referred to as the bias.
The fraction is a number between 1 and 2. In binary, this means that the leading term will always be 1,
and, therefore, it is a waste of bits to store it. To save space, the leading 1 is dropped. A float can then
be represented as

n = −1s2e−127(1 + f ).

TRY IT! What is the number 1 10000010 10000000000000000000000 (IEEE754) in base10?

The exponent in decimal is 1 · 27 + 1 · 21 − 127 = 3. The fraction is 1 · 1
21 + 0 · 1

22 + ... = 0.5.

Therefore n = −11 · 23 · (1 + 0.5) = −12 (base10).

TRY IT! What is 15 (base10) in IEEE754? What is the largest number smaller than 15? What is
the smallest number larger than 15?

Since the number is positive, s = 0. The largest power of two that is smaller than 15 is 8, so
the exponent is 3, making the characteristic 3 + 127 = 130 (base10) = 10000010 (base2). Then the
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fraction is 15/8−1 = 0.875 (base10) = 1 · 1
21 + 1 · 1

22 1 · 1
23 = .11100000000000000000000 (base2).

When put together this produces the following conversion:

15 (base10) = 0 1000010 11100000000000000000000 (IEEE754).

The next smallest number is 0 1000010 11011111111111111111111 = 14.999999046325684.

The next largest number is 0 1000010 11100000000000000000001 = 15.000000953674316.

Therefore, the IEEE754 number 0 1000010 11100000000000000000000 not only represents the
number 15, but also all the real numbers halfway between its immediate neighbors, or more specif-
ically, the interval [14.999999523162842 15.000000476837158]. So any computation that has a
result within this interval will be assigned 15.

We call the distance from one number to the next the gap. Because the fraction is multiplied by
2c−127, the gap grows as the number represented grows. The gap at a given number can be computed
using the function eps.

TRY IT! Use the eps function to determine the gap at 1e9. Verify that adding a number to 1e9
that is less than half the gap at 1e9 results in the same number.

There are special cases for the value of a single-precision floating point number when e = 0 (i.e.,
e = 00000000 (base2)) and when e = 255 (i.e., e = 111111112 (base2)). When the exponent is 0,
the leading 1 in the fraction takes the value 0 instead. The result is a subnormal number, which is
computed by n = −1s2−126(0 + f ). When the exponent is 255 and f is nonzero, then the result is
“Not a Number,” which MATLAB displays as NaN. This means that the number is undefined. When the
exponent is 255, then f = 0 and s = 0, and the result is positive infinity, which MATLAB displays as
Inf. When the exponent is 255, then f = 0, and s = 1, and the result is minus infinity, which MATLAB
displays as -Inf. There are similar special rules for double-precision floating point numbers.

TRY IT! Compute the base10 value for 0 11111110 11111111111111111111111 (IEEE754), the
largest defined number for 32 bits, and for 0 00000001 00000000000000000000001 (IEEE754), the
smallest. Note the that the exponent is, respectively, e = 254 and e = 1 to comply with the previously



128 CHAPTER 8 Representation of Numbers

stated rules. Verify that MATLAB agrees with these calculations using realmax('single')
and realmin('single').

Numbers that are larger than the largest representable floating point number result in overflow, and
MATLAB handles this case by assigning the result to Inf. Numbers that are smaller than the smallest
subnormal number result in underflow, and MATLAB handles this case by assigning the result to 0.

TRY IT! Recall that MATLAB uses double-precision floating point numbers as a default. Double-
precision uses 1 sign bit, 11 exponent bits and a bias of 1023, and 52 fraction bits. Show that adding
the maximum double-precision number with the gap at this number results in overflow and that
MATLAB assigns this overflow number to Inf. Show that adding the maximum double-precision
number to one-third the gap does not result in overflow.

TRY IT! The smallest subnormal number in double-precision has s = 0, e = 00000000000, and
f = 0000000000000000000000000000000000000000000000000001. Using the special rules for
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subnormal numbers, this results in the subnormal number −1021−10232−52 = 2−1074. Show that
2−1075 underflows to 0 and that the result cannot be distinguished from 0. Show that 2−1074 does
not.

So, what have we gained by using IEEE754 versus binary? Using 32 bits gives us about 4 billion
(232) numbers. Since the number of bits does not change between binary and IEEE754, IEEE754 must
also give us about 4 billion numbers. In binary, numbers have a constant spacing between them. As a
result, you cannot have both range (i.e., large distance between minimum and maximum representable
numbers) and precision (i.e., small spacing between numbers). Controlling these parameters would
depend on where you put the decimal point in your number. IEEE754 overcomes this limitation by
using very high precision at small numbers and very low precision at large numbers. This limitation
is usually acceptable because the gap at large numbers is still small relative to the size of the number
itself. Therefore, even if the gap is millions large, it is irrelevant to normal calculations if the number
under consideration is in the trillions or higher.

Summary
1. Numbers have many representations, and each representation has advantages and disadvantages.
2. Computers must represent numbers using a finite number of digits (bits).
3. Binary and IEEE754 are finite representations of numbers used by computers.

Vocabulary
base10 exponent sign indicator (IEEE754)
bias float single
binary floating point subnormal number
bit fraction (IEEE754) underflow
characteristic (IEEE754) gap
double IEEE754
decimal system overflow
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Functions and Operators
bin2dec
dec2bin
double
eps

Problems
1. Write a function with header [d] = myBin2Dec(b) where b is a binary number repre-

sented by a one-dimensional array of ones and zeros. The last element of b represents the
coefficient of 20, the second-to-last element of b represents the coefficient of 21, and so on.
The output variable, d, should be the decimal representation of b.

Test Cases:

2. Write a function with header [b] = myDec2Bin(d), where d is a positive integer in
decimal, and b is the binary representation of d. The output b must be a row vector of ones
and zeros, and the leading term must be a 1 unless the decimal input value is 0.

Test Cases:
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3. Use the two functions you wrote in problems 1 and 2 to computed = myBin2Dec(myDec2
Bin(12654)). Do you get the same number?

4. Write a function with header [b] = myBinAdder(b1,b2), where b1, b2, and b are
binary numbers represented as in problem 1. The output variable should be computed as b =
b1 + b2. Do not use your functions from problems 1 and 2 to write this function (i.e., do
not convert b1 and b2 to decimal; add them, and then convert the result back to binary).
This function should be able to accept inputs b1 and b2 of any length (i.e., very long binary
numbers), and b1 and b2 may not necessarily be the same length.

Test Cases:

5. What is the effect of allocating more bits to the fraction versus the characteristic and vice
versa? What is the effect of allocating more bits to the sign?

6. Write a function with header [d] = myIEEE2Dec(IEEE), where IEEE is a 1×32 array of
ones and zeros representing a 32-bit IEEE754 number. The output should be d, the equivalent
decimal representation of IEEE. The input variable IEEE will always be a 32-element array of
ones and zeros defining a 32-bit single precision float.

Test Cases:
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7. Write a function with header [IEEE] = myDec2IEEE(d), whered is a number in decimal
and IEEE a 1 × 32 array of ones and zeros representing the 32-bit IEEE754 closest to d. You
can assume that d will not cause an overflow for 32-bit IEEE numbers.
Test Cases:

8. Write a function with header [] = myFibTimer(). This function should store the time
required to compute the nth Fibonacci number for n = 5, 6, · · · , 20 using the recursive and
iterative implementation of Fibonacci numbers (both of which can be found in the reader). The
function should produce a plot with the Fibonacci number on the x-axis and the run time on
the y-axis. We know that this function will produce different results, even when run multiple
times on the same computer. Don’t worry. Just get the right idea on the plot. Put a title and
axis labels on your plot. The grid and legend are NOT necessary, nor do the tick marks on the
x- and y-axis have to be exactly the same.

Hint: The functions tic and toc will be useful.

Test Cases:
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9. Define IEEEBaby to be a representation of numbers using 6 bits where the first bit is the sign
bit, the second and third bits are allocated to the characteristic, and the fourth, fifth, and sixth
bits are allocated to the fraction. The normalization for the characteristic is 1.

Write all the decimal numbers that can be represented by IEEEBaby.
What is the largest/smallest gap in IEEEBaby?

10. Use the eps function to determine the smallest number such that the gap is 1.

11. What are some of the advantages and disadvantages of using binary versus decimal?

12. Write the number 13 (base10) in base1. How would you do addition and multiplication in
base1?

13. How high can you count on your fingers if you count in binary?

14. Let b be a binary number having n digits. Can you think of ways to multiply and divide b by 2
that does not involve any arithmetic? Hint: Think about how you multiply and divide a decimal
number by 10.
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Motivation
Regardless of how proficient, diligent, and careful a programmer you are, writing code with errors is
unavoidable, and this can be one of the most frustrating parts of programming. As such, dealing with
errors preemptively, mentally, and emotionally is a critical part of becoming a proficient programmer.
In this chapter, we give a formal definition of errors, provide good programming practices that will help
you avoid making errors, and show you some MATLAB tools to help you find errors when you make
them.

9.1 Error Types
There are three basic types of errors that programmers need to be concerned about: syntax errors,
runtime errors, and logical errors. Syntax is the set of rules that govern a language. In written
and spoken language, rules can be bent or broken to accommodate the speaker or writer. However, in a
programming language the rules are completely rigid. A syntax error occurs when the programmer writes
an instruction using incorrect syntax. For example, 1 = x is not legal in the MATLAB programming
language because numbers cannot be assigned as variables. If the programmer tries to execute one of
these instructions or any other syntactically incorrect statement, MATLAB will return an error to the
programmer in the form of a red message with the line where the error occurred and the probable cause.
This is commonly called throwing an error.
An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00009-9
© 2015 Elsevier Inc. All rights reserved.
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EXAMPLE: Syntax error examples.

Syntax errors are usually easily detectable, easily found, and easily fixed. Runtime errors are
much more difficult to find. Runtime errors are only detectable when a program is run. For exam-
ple, concatenation is legal in MATLAB syntax, but if you try to concatenate arrays of incorrect
dimensions, then MATLAB will not be able to carry out your instruction, and an error will be
produced.

EXAMPLE: Runtime error examples.

Most runtime errors are also easy to find because MATLAB will stop and tell you where the problem
is. After programming a function, seasoned programmers will usually run the function several times,
allowing the function to throw any errors so that they can fix them.

One of the most difficult kinds of runtime errors to find is called a logic error. A logic error does not
throw an error, but is an error because the output you get is not the solution you expect. For example,
consider the following erroneous implementation of the factorial function.

EXAMPLE: Erroneous factorial function.
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This function will not produce an error for any input that is valid for a correctly implemented
factorial function. However, if you try using myBadFactorial at the command window, you
will find that the answer is always 0 because out is initialized to 0 instead of 1. Therefore, the line
out = 0 is a logic error. It does not produce an error by MATLAB, but it leads to an incorrect
computation of factorial.

Although this kind of error seems unlikely to occur or at least as easy to find as other kinds of errors,
when programs become longer and more complicated, they are very easy to generate and notoriously
difficult to find. When logic errors occur, you have no choice but to meticulously comb through each line
of your code until you find the problem. For these cases, it is important to know exactly how MATLAB
will respond to every command you give and not make any assumptions. You can also use MATLAB’s
debugger, which will be described in the last section of this chapter.

9.2 Avoiding Errors
There are many techniques that can help prevent errors and make it easier for you to find them when
they occur. Becoming familiar with the types of mistakes common in programming is a “learning as
you go” process; therefore, we could not possibly list them all here. However, we present a few of them
in the following section to help get you started building good habits.

9.2.1 Plan your program
When writing an essay, it is important to have a structure and a direction that you intend to follow. To help
make your structure more tangible, writing an essay usually starts with an outline containing the main
points you wish to address in your paper. This is even more important to do when programming, because
computers are more strict than humans when interpreting what you write. Therefore, for complicated
programs you should start with an outline of your program that addresses all the tasks you want your
program to perform and in the order in which it should perform them.

Many novice programmers, eager to finish their assignments, will attempt to rush to the programming
part without properly planning out the tasks that are needed to accomplish the given task. Haphazard
planning results in equally haphazard code that is full of errors. Time spent planning out what you are
trying to do will be well spent, and you will surely finish faster than had you thrown together a program.

So what does planning a program consist of? Recall in Chapter 3 that a function is defined as
a sequence of instructions designed to perform a certain task. A module is a function or group of
functions that perform a certain task. It is important to design your program in terms of modules,
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especially for tasks that need to be repeated over and over again. Each module should accomplish a
small, well-defined task and know as little information about other functions as possible (i.e., have a
very limited set of inputs and outputs).

A good rule of thumb is to plan from the top to bottom and then program from the bottom to the top.
That is, decide what the overall program is supposed to do, then determine what the main tasks are to
complete the program, and then break the main tasks into components until the module is small enough
that you are confident you can write it without errors.

9.2.2 Test everything often
Along the lines of coding in modules, you should test each module for test cases for which you know
the answer and enough cases to be confident that the function is working properly (including corner
cases). For example, if you are writing a function that tells you whether a number is prime or not, you
should test the function for inputs of 0 (corner case), 1 (corner case), 2 (simple yes), 4 (simple no), and
97 (complicated no). If it passes all the test cases, you can move on to other modules, confident that
the current module works correctly. This is especially important if subsequent modules depend on or
call the module you are working on. If you assume incorrect code is correct because you did not test it,
when you get an error in later modules, you will not know whether the error is in the module you are
working on or in a previous module, and this will make finding the error more difficult.

You should also test often, even within a single module or function. When you are working on a
particular module that has several steps, you should do intermediate tests to make sure it is correct up to
the point you have completed. Then if you ever get an error, it will probably be in the part of your code
written since the last time you did test it. Even many seasoned programmers are guilty of writing pages
and pages of code without testing and then having to spend hours finding a small error somewhere.

9.2.3 Keep your code clean
Just like good craftsmen keep their work area as clean as possible, free of unnecessary clutter, so should
you keep your code as clean as possible. There are many things you can do to keep your code clean.
First, you should write your code in the fewest instructions possible. For example, » y = xˆ2 +
2*x + 1; is better than y = xˆ2; y = y + 2*x; y = y + 1. Even if the outcome is the
same, every character you type is a chance that you will make a mistake; therefore, reducing how much
you write down reduces your risk. Additionally, writing a complete expression will help you and other
people understand what you are doing. In the previous example, in the first case it is clear that you are
computing the value of a quadratic at x, while in the second case it is not clear.

You can also keep your code clean by using variables rather than values.

EXAMPLE: Poor implementation of adding 10 random numbers.
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EXAMPLE: Good implementation of adding 10 random numbers.

The second implementation is better for two reasons: first, it is easier for anyone reading your code
thatN represents the number of random numbers you want to add up, and it appears rationally where
it is supposed to in the code (i.e., when creating the list of random numbers and when indexing the
list in the for-loop); second, if you ever wanted to change the number of random numbers to add
up, you would only have to change it in one place at the beginning. This reduces the chances of
making mistakes while writing the code and when changing the value of N.

Again, this is not critical for such a small piece of code. However, it will become very important
when your code becomes more complicated and values must be reused many times.

You can also keep your code clean by giving your variables short, descriptive names. For exam-
ple, N is a sufficient variable for such a simple task as given earlier. The variable name x is
probably a good name since x usually holds value of position, rather than a number. Likewise,
theNumberOfRandomNumbersToBeAdded is also a poor variable name even though it is
descriptive.

Finally, you can keep your code clean by commenting frequently. Although no commenting is
certainly bad practice, over-commenting can be just as bad practice. However, different programmers
will disagree on exactly how much commenting is appropriate. It will be up to you to decide what level
of commenting is appropriate.

9.3 Try/Catch
Often it is important that a function handle certain types of errors gracefully. More specifically, the error
must not cause a critical error that makes your program shut down. A Try-Catch statement is a code
block that allows your program to take alternative actions in case an error occurs.

CONSTRUCTION: Try-Catch Statement
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MATLAB will first attempt to execute the code in the try statement (code block 1). If any error
occurs, the code in the catch statement will be executed (code block 2). Information about the error
that activated the catch statement is stored in the struct errorInfo. After handling the error as
you see fit (in code block 2), you can reinitiate the error using the function rethrow.

WARNING! Try-catch statements should never be used in place of good programming practice.
For example, you should not code sloppily and then encase your program in a try-catch statement
until you have taken every measure you can think of to ensure that your function is working properly.

9.4 Type Checking
MATLAB is a weakly typed programming language. This means that any variable can take on any
data type at any time. For example, you can write » x = 1; immediately followed by » x = ’s’.
In strongly typed programming languages, you must declare what kind of data type your variable is
to have before you use it, and the data type usage of your variable cannot change within the scope of
a function. Although it seems inconvenient to have to declare the data type of each of your variables,
having a strongly typed language helps ensure that you are not abusing the programming language and
that your function is being used properly when it is finished.

In the case of MATLAB, there is no way to ensure that the user of your function is inputting variables
of the data type you expect. For example, the function myAdder in Chapter 3 is designed to add three
numbers together. However, the user can input strings, structs, cells, or function handles, each of which
will cause different levels of problems. You can have your function type check the input variables before
continuing and force an error using theerror function. The error function takessprintf type inputs.

TRY IT! Modify myAdder to type check that the input variables are doubles. If any of the input
variables are not doubles, the function should return an appropriate error to the user using the error
function. Try your function for erroneous input arguments to verify that they are checked.
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9.5 Debugging
Debugging is the process of systematically removing errors, or bugs, from your code. MATLAB has
functionalities that can assist you when debugging.MATLAB’s debugger opens when you insert a
breakpoint into your code. A breakpoint is a line in your code at which MATLAB will stop when the
function is run. Figure 9.1 shows a breakpoint put at line 8 of myAdder.

To insert a breakpoint, you can click the button in the upper right or click the small horizontal
line to the left of the line of code where you wish MATLAB to stop. This is shown in Figure 9.1.

When you run your code, the editor will open with an arrow next to the line where MATLAB is

stopped (Figure 9.2). You can step through your code line by line by pushing the . At each step
you can check the values of all the variables in the function’s workspace to make sure they all have the
expected value.

You can also step in to code. That is, when you encounter a line that calls a function, you will enter

the workspace of the function called. You can step by clicking the step in button .

FIGURE 9.1

Breakpoint inserted at line 8.
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FIGURE 9.2

MATLAB stopped at breakpoint at line 8.

When you are finished debugging, you can clear all the breakpoints using the button and exit

the debugger by clicking the button.
Using the MATLAB’s debugger can be extremely helpful in finding and fixing errors in your code.

We encourage you to use the debugger for large programs.

Summary
1. Errors are inevitable when coding. Errors are important because they tell you that something is not

working the way you intended.
2. There are three types of errors: syntax errors, runtime errors, and logical errors.
3. You can reduce the numbers of errors in your coding with good coding practice.
4. Try-catch statements can be used to handle unexpected errors without stopping your code. However,

try-catch statements should never be used in place of good practice to manage errors.
5. The Debugger is a MATLAB tool for helping you find errors.
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Vocabulary
breakpoint step throwing an error
debugging step in try-catch statement
logic error strongly typed type check
module syntax weakly typed
runtime error syntax error

Functions and Operators
breakpoint error rethrow
breakpoint insert try
catch remove warning

Problems
(none)
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Motivation
Storing data and the results of your programming efforts is important for working over multiple sessions
and sharing your results with collaborators. Since when MATLAB closes, all the variables in the
workspace are lost, data must be stored in some other way than workspace variables. Sometimes data
must also be readable by or written in a form that can be read by other programs.

This chapter shows you how you can use MATLAB to read and write data in several common
formats.

10.1 .mat Files
A .mat file is the standard format for saving data within MATLAB. These files can be created using
the save function and loaded using the load function. Note that the save function will permanently
store a .mat file on your hard drive in the current working directory.

TRY IT! Create variables x = 1, y = 'string', and z = 1, 'string' and save them
in the file test.mat using the save function. Clear the variables from the workspace using
clear. Recall the variables in test.mat using the load function and verify that they are in
the workspace.

An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00010-5
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Note that you do not need to list all the variables in the workspace when using the save function.
You can just list the ones you want saved for next session. If in the previous example, the line >> save
test was used in place of >> save text x y z, then MATLAB would store all the variables in
the workspace in test.mat.

10.2 .txt Files
A .txt file, or text file, is a file containing only plain text. Text files are used to store data, and most
programs that work with data can read and write them. However, programs you write and programs
that read your text file will usually expect the text file to be in a certain format; that is, organized in a
specific way.

To work with text files you must first create a file identifier associated with the relevant text file.
A file identifier is an integer that MATLAB associates with a text file, similar to the way a function
handle is associated with a function. You can create a file identifier using the fopen function. The
fopen function has header [fid] = fopen(filename, permissions) where filename
is a string with the desired name of text file, and permissions is a string describing how the relevant
text file is going to be used. A list of permissions is given in Table 10.1. You can find the same table in
the help for fopen.

If you try to use fopen to open a file that does not exist or use a permission that does not create
the file, you will get a file identifier of −1. Once you have opened a text file for writing, you can write
to the file using several functions. For this course, we will use the fprintf function. The fprintf
function works similarly to sprintf except that it writes to a file rather than to a string output. You
can close the file from writing using fclose. After fclose is called on a file identifier, it cannot
be written to again without discarding the data. The output argument to fprintf is the number of
bytes written to the text file. You usually do not need to assign this output (i.e., just suppress the line of
code).
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Table 10.1 Permissions for fopen Function

Permission Description

‘r’ Open file for reading
‘w’ Open file for writing; discard existing contents
‘a’ Open or create file for writing; append data to end of file
‘r+’ Open (do not create) file for reading and writing
‘w+’ Open or create file for reading and writing; discard existing contents
‘a+’ Open or create file for reading and writing; append data to end of file
‘W’ Open file for writing without automatic flushing
‘A’ Open file for appending without automatic flushing

TRY IT! Create a text file called test.txt and populate it with mock values using fprintf.
Close the file for writing using fclose.

This produces the text file test.txt shown in Figure 10.1.

FIGURE 10.1

File test.txt opened in wordpad for PC.

You will notice that the file test.txt is permanently stored on your computer in the working
directory of MATLAB.
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There are also several functions for reading data from text files. The easiest to use is probablyfgetl.
To read data from text files you will need to open the file again usingfopen. The file identifier outputted
from fopen will be used as input to fgetl. Each call to fgetl will return the next line from the text
file until there are no more lines. Unfortunately each line is returned as a string, so if you are reading
numeric data, you will have to convert the string to doubles using the str2num function. If you have
read every line of data contained in the text file, fgetl will return the double −1.

TRY IT! Read the data from test.txt using fgetl. Store the values in a 5 × 3 matrix as
doubles. Hint: Use a while loop.

10.3 .xls Files
You can also read and write out of Microsoft Excel files, which is a useful format for dealing with large
tables of data. The remainder of this section assumes some working knowledge of Microsoft Excel. If
you do not know about Microsoft Excel, it is widely available, and should be both searchable on the
Internet and installed on most campus computers in the United States.

Writing to an Excel file is done using the function xlswrite. The xlswrite function has header
[success,message]=xlswrite(file,array,sheet,range), although it is not always
necessary to use all the inputs and outputs. The input variable file is the name of the .xls file that
is to be written to. If no such file exists, then the file will be created in the working directory. The input
variable array is a double array or a cell array. Each element of array will be written to a single cell
in an Excel spreadsheet (assuming that the elements of the cell are doubles or a chars).

The last two input variables are optional (i.e., they can be omitted). The input variable sheet is the
name of the sheet the data is to be written to. If the sheet does not exist, then it will be created in the
.xls file. The last input variable range is a string describing the location in the sheet where the data
is to be written. Microsoft Excel has an alphanumeric numbering system, where rows are denoted by
numbers and columns are denoted by letters. Column values are given first. The range is specified by
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the upper left coordinate and the lower right coordinate, separated by a comma. So A1:J10 would go
from the first row, first column to the tenth row, tenth column.

The output argument of xlswrite, success, is 1 if the data in the array was written successfully,
and 0 otherwise. The output variable,message, is a struct containing information about what happened.
You usually do not need to assign this output.

TRY IT! Use xlswrite to populate an Excel file called test.xls with mock values (see
Figure 10.2).

FIGURE 10.2

File from previous example, test.xls, opened in Microsoft Excel.

You can read data contained in .xls files using the xlsread function. The xlsread function has
header [numeric,txt,raw]=xlsread(file,sheet,range). The string input arguments
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file, sheet, and range are the filename, file, the sheet name, sheet, and the position of the cells
desired using Microsoft Excel notation, respectively. The numeric data is contained in the output argu-
ment, numeric (double), the string data is contained in the cell array txt, and all the data that
MATLAB could not process is contained in the cell array raw. If you know beforehand that there is no
other data besides numeric data, you can use only the output argument numeric.

TRY IT! Use thexlsread function to read the upperleft most 5×5 matrix of data values contained
in test.xls. Store the retrieved data in the matrix, A.

Summary
1. Data must often be stored for a later MATLAB session or for reading by other programs.
2. Data created by other programs may have to be read by MATLAB.
3. MATLAB has built-in functions to read and write data in several standard forms: .mat, .txt, and

.xls.

Vocabulary
file identifier text file .txt file
.mat file .xls file

Functions and Operators
fclose fread xlsread
fgetl fscanf xlswrite
fopen load
fprintf save

Problems
(none)
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Visualizing data is usually the best way to convey important engineering ideas and information, espe-
cially if the information is made up of many, many numbers. The ability to visualize and plot data
quickly and in many different ways is one of MATLAB’s most powerful features.

MATLAB has numerous graphics generators that enable you to efficiently display plots, surfaces,
volumes, vector fields, histograms, animations, and many other data plots. By the end of this chapter,
you should be familiar with the most common ones and have enough information to explore the rest.

It is worth noting that MATLAB’s graphical interface utilizes a style of programming called Object
Oriented Programming (OOP), which is a different school of thought than the type of programming
presented in this book. Thus we have tried to show you everything you need to know to use these features
without going into detail about how they work.

11.1 2D Plotting
The basic plotting function in MATLAB is plot (x,y). The plot function takes in two arrays, x
and y, and produces a visual display of the respective points in x and y.

TRY IT! Given the arrays x = [0 1 2 3] and y = [0 1 4 9], use the plot function to
produce a plot of x versus y.

You will notice in Figure 11.1 that by default, the plot function connects each point with a blue line.
To make the function look smooth, use a finer discretization of points.
An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00011-7
© 2015 Elsevier Inc. All rights reserved.
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FIGURE 11.1

Example of plot (x,y) where x and y are vectors.

TRY IT! Make a plot of the function f (x) = x2 for −5 ≤ x ≤ 5 (Figure 11.2).

FIGURE 11.2

Example of plot of the function f (x) = x2 on the interval [−5,5].



11.1 2D Plotting 153

Table 11.1 Color and Line Style Symbols

Symbol Description

b blue
g green
r red
c cyan
m magenta
y yellow
k black
w white
. point
o circle
x x-mark
+ plus
* star
s square
d diamond
v triangle (down)
ˆ triangle (up)
< triangle (left)
> triangle (right)
p pentagram
h hexagram
- solid
: dotted
-. dashdot
- - dashed
(none) no line

To change the marker or line, you can put a third input argument into plot, which is a string that
denotes the color and line style to be used in the plot. For example, plot (x,y,'ro') will plot the
elements of x against the elements of y using red, r, circles, 'o'. The possible marker colors and sizes
are shown in Table 11.1.

TRY IT! Make a plot of the function f (x) = x2 for −5 ≤ x ≤ 5 using a dashed green line
(Figure 11.3).
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FIGURE 11.3

Example of plot of the parabola f (x) = x2 with a green dashed line style.

You can plot more than one data set into a single graph using the hold on command. Typing hold
on will put all subsequent plots on the same graph until hold off is typed.

TRY IT! Make a plot of the function f (x) = x2 and g(x) = x3 for −5 ≤ x ≤ 5 (Figure 11.4).
Use different colors and markers for each function.

FIGURE 11.4

Other examples of plotting styles, illustrated for f (x) = x2 and f (x) = x3, respectively.
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It is customary in engineering to always give your plot a title and axis labels so that people know
what your plot is about. You can add a title to your plot using the title function, which takes as input
a string and puts that string as the title of the plot. The functions xlabel and ylabel work in the
same way to name your axis labels.

TRY IT! Add a title and axis labels to the previous plot (Figure 11.5).

FIGURE 11.5

Example of use of title, xlabel, and ylabel to annotate Figure 11.4.

TIP! You can usesprintf function with the title function to make customized titles. For example,
you may want to include data-specific content in your title.

TRY IT! Use the sprintf function to change the title of the previous plot to “Plot of Various
Polynomials from −5 to 5" (Figure 11.6).
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FIGURE 11.6

Example of using sprintf to create a data-specific title for a figure.

You can add a legend to your plot by using the legend function. The legend function takes the
same number of strings as input as the number of data sets that are being plotted. It is up to you to put
the same number of legend entries as data sets. Too few will leave some of your data sets unlabeled,
and too many will ignore the extras and give you a warning.

TRY IT! Add a legend to the previous plot using the legend function (Figure 11.7).
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FIGURE 11.7

Example of using legend to create a legend within a figure.

Finally, you can further customize the appearance of your plot using the axis function and the
grid command. The axis function takes in a 1×4 array of the form [xmin xmax ymin ymax],
which denotes the limits of each axis. The grid on command adds a grid to the axis, and grid
off removes it. You can also use options with the axis command, such as axis equal, axis
square, axis tight, and several others. The description for these options can be found in the help
function for the axis function.

TRY IT! Use the axis function to change the limits such that x is visible from −6 to 6 and y is
visible from −10 to 10 (Figure 11.8). Turn the grid on.
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FIGURE 11.8

Example of customization of a plot by using the axis command to define the size of the display window
and using grid on to display a grid.

To open a new figure without overwriting the current figure, type » figure. To the close all the
current figures, type » close all. To clear the contents of a figure without closing the figure, type
» clf.

You can create a table of plots on a single figure using the subplot function. The subplot
function takes three inputs: the number of rows of plots, the number of columns of plots, and to which
plot all calls to plotting functions should plot. You can move to a different subplot by calling the
subplot again with a different entry for the plot location.

There are several other plotting functions that plotx versusy data. Some of them arescatter,bar,
loglog, semilogx, and semilogy. scatter works exactly the same as plot except it defaults
to red circles (i.e., plot (x,y,'ro') is equivalent to scatter (x,y)). The bar function plots
bars centered at x with height y. The loglog, semilogx, and semilogy functions plot the data in
x and y with the x and y axis on a log scale, the x axis on a log scale and the y axis on a linear scale,
and the y axis on a log scale and the x axis on a linear scale, respectively.

TIP! When making complicated plots, it is useful to make a script file that generates the plot rather
than generating it from the command prompt. If and when you make a mistake, you will have to reen-
ter many commands, each of which will give you new opportunities to make other mistakes. With
a script file, you will be able to change the erroneous line and then rerun the script to make the plot.
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TRY IT! Given the arrays x = [0 1 2 3 4 5] and y = [1 2 4 8 16 2], create a 2×3
subplot where each subplot plots x versus y using plot, scatter, bar, loglog, semilogx,
and semilogy. Title and label each plot appropriately. Use a grid, but a legend is not necessary.
(See Figure 11.9.)
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FIGURE 11.9

Example of plots respectively obtained with the commands plot, scatter, bar, loglog, and
semilogx organized using the subplot command.

Finally, there are other functions for plotting data in 2D. The errorbar function plots x versus y
data but with error bars for each element. The polar function plots θ versus r rather than x versus y.
The stemplot function plots stems at x with height at y. The hist function makes a histogram of a
data set; X; boxplot gives a statistical summary of a data set; and pie makes a pie chart. The usage
of these functions are left to your exploration.



11.2 3D Plotting 161

11.2 3D Plotting
The basic 3D plotting function is plot3, which has header [] = plot3(x,y,z) where x, y, and
z are vectors. The plot3 function will plot all (x,y,z) coordinates, and the default call to plot3
connects subsequent points with a blue line. Commands such asgrid,hold,axis,title,xlabel,
ylabel, legend, and subplot work the same as when plotting in two dimensions.

TRY IT! Consider the parameterized data set t = [0:pi/50:10*pi], x = sin (t), and
y = cos (t). Make a three-dimensional plot of the (x, y, t) data set using plot3. Turn the
grid on, make the axis equal, and put axis labels and a title. (See Figure 11.10.)

FIGURE 11.10

Example of a three-dimensional plot obtained for the helix (sin(t), cos(t), t) using plot3.
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Many times we would like a surface plot rather than a line plot when plotting in three dimensions. In
three-dimensional surface plotting, we wish to make a graph of some relationship f (x, y). In surface
plotting all (x,y) pairs must be given. This is not straightforward to do using vectors. Therefore, in
surface plotting, the first data structure you must create is called a mesh. Given vectors ofx andy values,
a mesh is a listing of all the possible combinations of x and y. In MATLAB, the mesh is given as two
matrices X and Y where X (i,j) and Y (i,j) define possible (x,y) pairs. A third matrix, Z, can
then be created such that Z (i,j) = f (X (i,j), Y (i,j)). A mesh can be created using
the meshgrid function in MATLAB. The meshgrid function has header [X,Y] = meshgrid
(x,y), where x and y are vectors containing the independent data set. The output variables X and Y
are as described earlier.

TRY IT! Create a mesh of the vectors x = [1 2 3 4] and y = [3 4 5] using the
meshgrid function.

There are several functions in MATLAB to plot surfaces. Each function has a different look, but they
have the same basic function header [] = surf (X,Y,Z), whereX and Y are the output arrays from
meshgrid, and Z = f (X,Y) or Z (i,j) = f (X (i,j),Y (i,j)). The most common
surface plotting functions are surf and contour. All commands such as hold, axis, grid, among
others work with these plots as well.

TRY IT! Make a 1 × 2 subplot of the surface f (x, y) = sin (x) · cos (y) for −5 ≤ x ≤ 5,−5 ≤
y ≤ 5, the first using the surf function and the second using the contour function. Take care to
use a sufficiently fine discretization in x and y to make the plot look smooth. (See Figure 11.11.)
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FIGURE 11.11

Illustration of surface and contour plots.

You will notice that the surface plot shows different colors for different elevations, red for higher and
blue for lower. The color scheme for a surface plot can be changed using the functions such as caxis
and colormap. These are left as exercises.

There are many more functions related to plotting in MATLAB and this is in no way an exhaustive
list. However, it should be enough to get you started so that you can find the plotting functions in
MATLAB that suit you best and provide you with enough background to learn how to use them when
you encounter them. For example, bar3 and isosurface are more advanced 3D plotting functions
that are given as problems. Also, MATLAB’s visualization toolbox is very advanced, and explaining all
the plot customization methods is beyond the scope of this book. However, reading MATLAB’s help
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for various plotting functions is enough to find out how to do many of the things you will need to do in
your engineering careers.

11.3 Animations and Movies
An animation is a sequence of still frames, or plots, that are displayed in fast enough succession to
create the illusion of continuous motion. Animations and movies often convey information better than
individual plots. You can create animations in MATLAB by calling a plot function inside of a loop
(usually a for-loop). However, due to the way in which MATLAB handles plotting, you must call the
drawnow command for the updated plot to be displayed to the screen.

TRY IT! Create an animation of a red circle following a blue sin wave (Figure 11.12).

You can store movies using MATLAB’s avifile function. The avifile function has header
aviobj = avifile (filename). The input variable filename is a string containing the
desired name of the movie file. The output variable aviobj is a variable with a new kind of data
type called avifile. A variable with data type avifile contains data about the .avi file being
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FIGURE 11.12

Snapshot from the animation obtained by execution of the code above.

created. You can store a figure as a frame (another data type) using the getframe function and add
individual frames to the avifile variable using the function addframe. Note that the function gcf
is a reference to the current figure. A more detailed explanation of what this means is beyond the scope
of this book. However, you can study this in more detail in books on object oriented programming.
When you are done adding frames to the avifile, you must close the avifile variable using the
close function. You will see a movie file permanently stored in the working directory of MATLAB
after you are finished.

TRY IT! Add code to the previous example so that the movie is stored as an avi file called
'test.avi'.
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Note that this code was run on a PC (i.e., Windows) and may have problems working on a Mac.

Summary
1. Visualizing data is an essential tool in engineering.
2. MATLAB has a vast library of plotting tools that can be used to visualize data.

Vocabulary
animation
mesh
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Functions and Operators
addframe grid minor semilogx
avifile hist semilogy
axis hold off stem
bar hold on subplot
bar3 legend surf
box loglog surface
close all mesh title
contour meshgrid view
contourf patch waterfall
errorbar pie xlabel
figure plot ylabel
getframe plot3
grid polar

Problems
1. A cycloid is the curve traced by a point located on the edge of a wheel rolling along a flat

surface. The (x, y) coordinates of a cycloid generated from a wheel with radius, r , can be
described by the parametric equations:

x = r(φ − sin φ)

y = r(1 − cos φ)

where φ is the number of radians that the wheel has rolled through.
Generate a plot of the cycloid for 0 ≤ φ ≤ 2π using 1000 increments and r = 3. Give your
plot a title and labels. Turn the grid on and modify the axis limits to make the plot neat.

2. Consider the following function:

y(x) =
√

100(1 − 0.01x2)2 + 0.02x2

(1 − x2)2 + 0.1x2 .

Generate a 2 × 2 subplot of y(x) for 0 ≤ x ≤ 100 using plot, semilogx, semilogy, and
loglog. Use a fine enough discretization in x to make the plot appear smooth. Give each plot
axis labels and a title. Turn the grid on. Which plot seems to convey the most information?.

3. Plot the functions y1(x) = 3 + exp −x sin (6x) and y2(x) = 4 + exp ( − x) cos (6x) for
0 ≤ x ≤ 5 on a single axis using the hold command. Give the plot axis labels, a title, and a
legend.

4. Generate 1000 normally distributed random numbers using the randn function. Look up
the help for the hist function. Use the hist function to plot a histogram of the randomly
generated numbers. Use the hist function with header [N,X] = hist (Y) to distribute
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the randomly generated numbers into 10 bins. Create a bar graph of output of hist using the
bar function. It should look very similar to the plot produced by hist.
Do you think that the randn function is a good approximation of a normally distributed
number?.

5. Let the number of students with A’s, B’s, C’s, D’s, and F’s be contained in the arraygradeDist
= [42 85 67 20 5]. Use the pie function to generate a pie chart of gradeDist. Put a
title and legend on the pie chart.

6. Let −4 ≤ x ≤ 4,−3 ≤ y ≤ 3, and z(x, y) = xy(x2−y2)

x2+y2 . Create vectorsx andywith 100 evenly
spaced points over the interval. Create meshgrids X and Y for x and y using the meshgrid
function. Compute the matrix Z from X and Y. Create a 2 × 2 subplot where the first row
is the surface Z plotted using surf and a plot using mesh, respectively. The second row of
the subplot should be the surface Z plotted using the functions contour, and contourf,
respectively. Give each axis a title and axis labels.

7. Write a function with header [] = myPolygon (n) that plots a regular polygon with n
sides and radius 1. Recall that the radius of a regular polygon is the distance from its centroid
to the vertices. Use axis equal to make the polygon look regular. Remember to give the
axes a label and a title. You can use title and sprintf to title the plot according to the
number of sides. Use the axis function to make the x-axis and y-axis go from −1 to 1. Hint:
This problem is significantly easier if you think in polar coordinates. Recall that a complete
revolution around the unit circle is 2π radians. Note: The first and last point on the polygon
should be the point associated with the polar coordinate angles, 0 and 2π , respectively. (See
Figure 11.13.)

Test Cases:

FIGURE 11.13

Test case for problem.m7 (plotting a polygon with 5 faces).
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FIGURE 11.14

Test case for the function myFunPlotter (f,x) on the function
√

x + exp ( sin (x)).

8. Write a function with header [] = myFunPlotter (f,x) where f is a function han-
dle and x is an array. The function should plot f evaluated at x. Use the func2str and
sprintf functions to put the function f into the title. Remember to label the x- and y-axis.
(See Figure 11.14.)

Test Cases:

9. Write a function with header [] = myPolyPlotter (n,x) that plots the polynomials
pk(x) = xk for k = 1, . . . , n. Make sure your plot has axis labels and a title. (See Figure 11.15.)

Test Cases:

10. Assume you have three points at the corner of an equilateral triangle, P1 = (0, 0), P2 =
(0.5,

√
2/2), and P3 = (1, 0). Now you want to generate another set of points pi = (xi , yi )

such that p1 = (0, 0) and pi+1 is the midpoint between pi and P1 with 33% probability, the
midpoint between pi and P2 with 33% probability, and the midpoint between pi and P3 with
33% probability. Write a function with header [] = mySierpinski (n) that generates
the points pi for i = 1, · · · , n. The function should make a plot of the points using blue dots
(i.e., 'b.' as the third argument to the plot command). (See Figure 11.16.)

Test Cases:

Try your function for n = 10000.
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FIGURE 11.15

Test case for the function myPolyPlotter (n,x) used for five polynomials pk (x) = x1 for k = 1, · · · , 5.

FIGURE 11.16

Test case for the function mySierpinski (n).

11. Assume you are generating a set of points (xi , yi ) where x1 = 0 and y1 = 0. The points (xi , yi )

for i = 2, · · · , n is generated according to the following probabilistic relationship:
With 1% probability:
xi = 0
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yi = 0.16yi−1
With 7% probability:
xi = 0.2xi−1 − 0.26yi−1
yi = 0.23xi−1 + 0.22yi−1 + 1.6
With 7% probability:
xi = −0.15xi−1 + 0.28yi−1
yi = 0.26xi−1 + 0.24yi−1 + 0.44
With 85% probability:
xi = 0.85xi−1 + 0.04yi−1
yi = −0.04xi−1 + 0.85yi−1 + 1.6
Write a function with header [] = myFern (n) that generates the points (xi , yi ) for
i = 1, . . . , n and plots them using blue dots. Hint: Look at the function mySierpinski
that you downloaded for Lab 0. (See Figure 11.17.)

Test Cases:

FIGURE 11.17

Test case for the function myFern (n) with 100 iterations.

Try your function for n = 10000. The image generated is called a stochastic fractal. Many times
it is cheaper (i.e., requires less space) to store the fractal generating code rather than the image.
This makes stochastic fractals useful for image compression.

12. Write a function with header [] = myParametricPlotter (x,y,t) where x and y
are handles to the functions x (t) and y (t), respectively, and t is a one-dimensional array.
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FIGURE 11.18
Test case for myParametricPlotter.

The function myParametricPlotter should produce the curve (x(t), y(t), t) in a three-
dimensional plot. Be sure to give your plot a title and axis labels. (See Figure 11.18.)

Test Cases:

13. Write a function with header [] = mySurfacePlotter (F, x, y, option)where
F is a handle to the function F (x,y). The function mySurfacePlotter should produce
a 3D surface plot of F (x,y) using surf if option is the string ‘surf’. It should produce
a contour plot of F (x,y) if the option is the string ‘contour’. Assume that x and y are
one-dimensional arrays. Remember to give the plot a title and axis labels. (See Figure 11.19.)

Test Cases:

14. Write a line of code that generates the following error:
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FIGURE 11.19

Test cases for mySurfacePlotter.
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Motivation
Numerous problems in engineering can be described or approximated by linear relationships. For
example, if you combine resistors in a complicated circuit, you will obtain a system of linear rela-
tionships. Similarly, if you study small deformations of rigid structures, you will also get a system of
relationships. In fact, it is difficult to think of any technical or engineering field in which relationships
of these kind are not fundamental.

The study of linear relationship is contained in the field of linear algebra, and this chapter provides
a basic overview of some basic linear algebraic vocabulary and concepts that are important for later
chapters. Since this text does not assume any prior knowledge of linear algebra, some of the more
abstract mathematical concepts and proofs on this topic have been omitted to make the material more
accessible. However, the information in this chapter is in no way comprehensive and should not be
considered a substitute for a full linear algebra course.

By the end of this chapter you should understand a variety of linear algebra concepts and calculations.
You should know MATLAB’s built-in functions for these concepts and calculations. You should know
what systems of linear equations are and their relationship to matrices and linear transformations.
Finally, you should know how to use MATLAB to compute solutions to systems of linear equations.

12.1 Sets
In mathematics, a set is a collection of objects. Sets are usually denoted by braces {}. For example,
S = {orange, apple, banana} means “S is the set containing ‘orange’, ‘apple’, and ‘banana’ ”.
An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00012-9
© 2015 Elsevier Inc. All rights reserved.
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Table 12.1 Various Sets of Numbers and Corresponding Notations Used to Denote Them

Set Name Symbol Description

Naturals N N = {1, 2, 3, 4, · · · }.
Wholes W W = N ∪ {0}
Integers Z Z = W ∪ {−1, −2,−3, · · · }
Rationals Q Q = { p

q : p ∈ Z, q ∈ Z\{0}}
Irrationals I I is the set of real numbers not expressible as a fraction of integers.
Reals R R = Q ∪ I

Complex Numbers C C = {a + bi : a, b ∈ R, i = √−1}

The empty set is the set containing no objects and is typically denoted by empty braces such as {}
or by ∅. Given two sets, A and B, the union of A and B is denoted by A ∪ B and equal to the set
containing all the elements of A and B. The intersect of A and B is denoted by A ∩ B and equal
to the set containing all the elements that belong to both A and B. In set notation, a colon is used to
mean “such that.” The usage of these terms will become apparent shortly. The symbol ∈ is used to
denote that an object is contained in a set. For example a ∈ A means “a is a member of A” or “a is
in A.” A backslash, \, in set notation means set minus. So if a ∈ A then A\a means “A minus the
element, a.”

There are several standard sets related to numbers, for example natural numbers, whole numbers,
integers, rational numbers, irrational numbers, real numbers, and complex numbers. A description
of each set and the symbol used to denote them is shown in Table 12.1.

TRY IT! Say whether the following numbers belong to the set of natural numbers, whole num-
bers, integers, rational numbers, irrational numbers, real numbers, and/or complex numbers: 0, 1,
π, e,

√
2, 3 + 6i .

0 : W, Z, Q, R, C.
1 : N, W, Z, Q, R, C.
π : I, R, C.
e : I, R, C.√

2 : I, R, C.
3 + 6i : C.

TRY IT! Let S be the set of all real (x, y) pairs such that x2 + y2 = 1. Write S using set notation.
S = {(x, y) : x, y ∈ R, x2 + y2 = 1}.
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12.2 Vectors
The set Rn is the set of all n-tuples of real numbers. In set notation this is Rn = {(x1, x2, x3, · · · , xn) :
x1, x2, x3, · · · , xn ∈ R}. For example, the set R3 represents the set of real triples, (x, y, z) coordinates,
in three-dimensional space.

A vector in Rn is an n-tuple, or point, in Rn . Vectors can be written horizontally (i.e., with the
elements of the vector next to each other) in a row vector, or vertically (i.e., with the elements of the
vector on top of each other) in a column vector. If the context of a vector is ambiguous, it usually
means the vector is a column vector. The i-th element of a vector, v, is denoted by vi . The transpose
of a column vector is a row vector of the same length, and the transpose of a row vector is a column
vector. In mathematics, the transpose is denoted by a superscript T , or vT . In MATLAB, the transpose
of a vector, v, is written v'. The zero vector is the vector in Rn containing all zeros.

The norm of a vector is a measure of its length. There are many ways of defining the length of a vector
depending on the metric used (i.e., the distance formula chosen). The most common is called the L2
norm, which is computed according to the distance formula you are probably familiar with from grade

school. The L2 norm of a vector v is denoted by ‖v‖2 and ‖v‖2 =
√∑

i v2
i . This is sometimes also

called Euclidian length and refers to the “physical” length of a vector in one-, two-, or three-dimensional
space. The L1 norm, or “Manhattan Distance,” is computed as ‖v‖1 = ∑

i |vi |, and is named after the

grid-like road structure in New York City. In general, the p-norm, L p, of a vector is ‖v‖p = p
√

(
∑

i v
p
i ).

The L∞ norm is the p-norm, where p = ∞. The L∞ norm is written as ||v||∞ and it is equal to the
maximum absolute value in v.

TRY IT! Use the MATLAB function norm to compute the L1, L2, and L∞ norm of the vector
v = (1,−5, 3, 2, 4) ∈ R5. Verify that the L∞ norm of a vector is equivalent to the maximum value
of the elements in the vector.
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Vector addition is defined as the pairwise addition of each of the elements of the added vectors. For
example, if v and w are vectors in Rn , then u = v + w is defined as ui = vi + wi .

Vector multiplication can be defined in several ways depending on the context. Scalar multiplication
of a vector is the product of a vector and a scalar (i.e., a number in R). Scalar multiplication is defined
as the product of each element of the vector by the scalar. More specifically, if α is a scalar and v is a
vector, then u = αv is defined as ui = αvi . Note that this is exactly how MATLAB implements scalar
multiplication with a vector.

TRY IT! Show that a(v + w) = av + aw (i.e., scalar multiplication of a vector distributes across
vector addition).

By vector addition, u = v + w is the vector with ui = vi + wi . By scalar multiplication of a
vector, x = αu is the vector with xi = α(vi + wi ). Since α, vi , and wi are scalars, multiplication
distributes and xi = αvi + αwi . Therefore, a(v + w) = av + aw.

The dot product of two vectors is the sum of the product of the respective elements in each vector
and is denoted by ·, and v · w is read “v dot w.” Therefore for v and w ∈ Rn, d = v · w is defined as
d = ∑n

i=1 viwi . The angle between two vectors, θ , is defined by the formula:

v · w = ‖v‖2‖w‖2 cos θ.

The dot product is a measure of how similarly directed the two vectors are. For example, the vectors
(1,1) and (2,2) are parallel. If you compute the angle between them using the dot product, you will find
that θ = 0. If the angle between the vectors, θ = π/2, then the vectors are said to be perpendicular or
orthogonal, and the dot product is 0.

TRY IT! Compute the angle between the vectors v = (10, 9, 3) and w = (2, 5, 12).

Note in the present example that the dot product is computed by multiplying v by w’s transpose. It
could also have been done using MATLAB’s function, dot.

Finally, the cross product between two vectors, v and w, is written v × w. It is defined by v × w =
‖v‖2‖w‖2 sin (θ)n, where θ is the angle between the v and w (which can be computed from the dot
product) and n is a vector perpendicular to both v and w with unit length (i.e., the length is one). The
geometric interpretation of the cross product is a vector perpendicular to both v and w with length equal
to the area enclosed by the parallelogram created by the two vectors.
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TRY IT! Given the vectors v = (0, 2, 0) and w = (3, 0, 0), use the MATLAB function cross to
compute the cross product of v and w.

Assuming that S is a set in which addition and scalar multiplication are defined, a linear combination
of S is defined as ∑

αi si ,

whereαi is any real number and si is the i th object in S. Sometimes theαi values are called the coefficients
of si . Linear combinations can be used to describe numerous things. For example, a grocery bill can be
written

∑
ci ni , where ci is the cost of item i and ni is the number of item i purchased. Thus, the total

cost is a linear combination of the items purchased.
A set is called linearly independent if no object in the set can be written as a linear combination of

the other objects in the set. For the purposes of this book, we will only consider the linear independence
of a set of vectors. A set of vectors that is not linearly independent is linearly dependent.

TRY IT! Given the MATLAB vectors v = [0 3 2]', w = [4 1 1]', and u = [0 -2
0]', write the vector x = [-8 -1 4]' as a linear combination of v, w, and u.

TRY IT! Determine by inspection whether the following set of vectors is linearly independent:
v = (1, 1, 0), w = (1, 0, 0), u = (0, 0, 1).

Clearly u is linearly independent from v and w because only u has a nonzero third element.
The vectors v and w are also linearly independent because only v has a nonzero second element.
Therefore, v,w, and u are linearly independent.
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12.3 Matrices
An m ×n matrix is a rectangular table of numbers consisting of m rows and n columns. Matrix addition
and scalar multiplication for matrices work the same way as for vectors. However, matrix multiplication
between two matrices, P and Q, is defined when P is an m× p matrix and Q is a p×n matrix. The result
of M = P Q is a matrix M that is m×n. The dimension with size p is called the inner matrix dimension,
and the inner matrix dimensions must match (i.e., the number of columns in P and the number of rows
in Q must be the same) for matrix multiplication to be defined. The dimensions m and n are called the
outer matrix dimensions. Formally, if P is m × p and Q is p × n, then M = P Q is defined as

Mi j =
p∑

k=1

Pik Qkj

The product of two matrices P and Q in MATLAB is achieved by the command *. The transpose
of a matrix is a reversal of its rows with its columns. The transpose is denoted by a superscript, T . In
MATLAB, the transpose operator is denoted by an apostrophe, '. For example, if M is a matrix, then
M' is its transpose.

TRY IT! Let the MATLAB matrices P = [1 7; 2 3; 5 0] and Q = [2 6 3 1; 1 2
3 4]. Compute the matrix product of P and Q using MATLAB’s * symbol. Show that Q*P and
P*Q' produce an error.
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A square matrix is an n × n matrix; that is, it has the same number of rows as columns. The
determinant is an important property of square matrices. The determinant is denoted by det, both in
mathematics and in MATLAB. Some of the uses of a determinant will be described later.

The identity matrix is a square matrix with ones on the diagonal and zeros elsewhere. The identity
matrix is usually denoted by I , and is analagous to the real number identity, 1. That is, multiplying any
matrix by I (of compatible size) will produce the same matrix.

TRY IT! Use MATLAB to find the determinant of the MATLAB matrix M = [0 2 1 3; 3
2 8 1; 1 0 0 3; 0 3 2 1]. Use the eye function to produce a 4 × 4 identity matrix, I .
Multiply M by I to show that the result is M .

The inverse of a square matrix M is a matrix of the same size, N , such that M · N = I . The inverse
of a matrix is analagous to the inverse of real numbers. For example, the inverse of 3 is 1

3 because
(3)( 1

3 ) = 1. A matrix is said to be invertible if it has an inverse. The inverse of a matrix is unique; that
is, for an invertible matrix, there is only one inverse for that matrix. If M is a square matrix, its inverse
is denoted by M−1 in mathematics, and it can be computed in MATLAB using the function inv.

Recall that 0 has no inverse for multiplication in the real-numbers setting. Similarly, there are matrices
that do not have inverses. These matrices are called singular. Matrices that do have an inverse are called
nonsingular.

One way to determine if a matrix is singular is by computing its determinant. If the determinant is
0, then the matrix is singular; if not, the matrix is nonsingular.
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TRY IT! The matrix M (in the previous example) has a nonzero determinant. Use MATLAB’s
inv function to compute the inverse of M . Show that the matrix P = [0 1 0; 0 0 0; 1 0
1] has a determinant value of 0 and therefore has no inverse. Try to compute the inverse anyway.

A matrix that is close to being singular (i.e., the determinant is close to 0) is called ill-conditioned.
Although ill-conditioned matrices have inverses, they are problematic numerically in the same way that
dividing a number by a very, very small number is problematic. That is, it can result in computations
that result in overflow, underflow, or numbers small enough to result in significant round-off errors.
The condition number is a measure of how ill-conditioned a matrix is, and it can be computed using
MATLAB’s built-in function cond. The higher the condition number, the closer the matrix is to being
singular.

The rank of an m × n matrix A is the number of linearly independent columns or rows of A, and
is denoted by rank(A). It can be shown that the number of linearly independent rows is always equal
to the number of linearly independent columns for any matrix. A matrix is called full rank if rank
(A) = min (m, n). The matrix, A, is also full rank if all of its columns are linearly independent. An
augmented matrix is a matrix, A, concatenated with a vector, y, and is written [A, y]. This is commonly
read “A augmented with y.” If rank([A, y]) = rank(A) + 1, then the vector, y, is “new” information.
That is, it cannot be created as a linear combination of the columns in A. The rank is an important
property of matrices because of its relationship to solutions of linear equations, which is discussed in
the last section of this chapter.

For a square matrix, M , the determinant is zero when M is not full rank; otherwise the determinant
is nonzero. As a consequence, you can check if M is singular by checking the determinant.
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12.4 Linear Transformations
For vectors x and y, and scalars a and b, it is sufficient to say that a function, F , is a linear transfor-
mation if

F(ax + by) = aF(x) + bF(y).

It can be shown that multiplying an m × n matrix, A, and an n × 1 vector, v, of compatible size is
a linear transformation of v. Therefore from this point forward, a matrix will be synonymous with a
linear transformation function.

TRY IT! Let x be a vector and let F(x) be defined by F(x) = Ax where A is a rectangular matrix
of appropriate size. Show that F(x) is a linear transformation.

Proof:
Since F(x) = Ax , then for vectors v and w, and scalars a and b, F(av + bw) = A(av + bw) (by
definition of F) = a Av+bAw (by distributive property of matrix multiplication) = aF(v)+bF(w)

(by definition of F).
QED.

The domain of A is the set of all vectors that can be multiplied by A on the right. If A is an m×n matrix,
then the domain of the linear transformation A is Rn . The range of A is the set of all vectors y such that
y = Ax . Another way to think about the range of A is the set of all linear combinations of the columns
in A, where xi is the coefficient of the ith column in A. The null space of A is the subset of vectors in
the domain of A, x , such that Ax = 0, where 0 is the zero vector (i.e., a vector in Rm with all zeros).

TRY IT! Let A = [1 0 0; 0 1 0; 0 0 0] and let the domain of A be R3. Characterize
the range and nullspace of A.

Let v = (x, y, z) be a vector in R3. Then u = Av is the vector u = (x, y, 0). Since x, y ∈ R,
the range of A is the x-y plane at z = 0.

Let v = (0, 0, z) for z ∈ R. Then u = Av is the vector u = (0, 0, 0). Therefore, the nullspace
of A is the z-axis (i.e., the set of vectors (0, 0, z) z ∈ R).

Therefore, this linear transformation “flattens” any z-component from a vector.

12.5 Systems of Linear Equations
A linear equation is an equality of the form

n∑
i=1

(ai xi ) = y,

where ai are scalars, xi are unknown variables in R, and y is a scalar.
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TRY IT! Determine which of the following equations is linear and which is not. For the ones that
are not linear, can you manipulate them so that they are?

1. 3x1 + 4x2 − 3 = −5x3

2. −x1+x2
x3

= 2

3. x1x2 + x3 = 5

Equation 1 can be rearranged to be 3x1 + 4x2 + 5x3 = 3, which clearly has the form of a linear
equation. Equation 2 is not linear but can be rearranged to be −x1 + x2 − 2x3 = 0, which is linear.
Equation 3 is not linear.

A system of linear equations is a set of linear equations that share the same variables. Consider the
following system of linear equations:

a1,1x1 + a1,2x2 + . . . + a1,n−1xn−1 + a1,n xn = y1,

a2,1x1 + a2,2x2 + . . . + a2,n−1xn−1 + a2,n xn = y2,

. . . . . .

am−1,1x1 + am−1,2x2 + . . . + am−1,n−1xn−1 + am−1,n xn = ym−1,

am,1x1 + am,2x2 + . . . + am,n−1xn−1 + am,n xn = ym .

where ai, j and yi are real numbers. The matrix form of a system of linear equations is Ax = y where
A is a m × n matrix, A(i, j) = ai, j , y is a vector in Rm , and x is an unknown vector in Rn . If you carry
out the matrix multiplication, you will see that you arrive back at the original system of equations.

TRY IT! Put the following system of equations into matrix form.

4x + 3y − 5z = 2

−2x − 4y + 5z = 5

7x + 8y = −3

x + 2z = 1

9 + y − 6z = 6

⎡
⎢⎢⎢⎢⎣

4 3 −5
−2 −4 5
7 8 0
1 0 2
9 1 −6

⎤
⎥⎥⎥⎥⎦

⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

2
5

−3
1
6

⎤
⎥⎥⎥⎥⎦
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12.6 Solutions to Systems of Linear Equations
Consider a system of linear equations in matrix form, Ax = y, where A is an m × n matrix. Recall
that this means there are m equations and n unknowns in our system. A solution to a system of linear
equations is an x in Rn that satisfies the matrix form equation. Depending on the values that populate A
and y, there are three distinct solution possibilities for x . Either there is no solution for x , or there is one,
unique solution for x , or there are an infinite number of solutions for x . This fact is not shown in this text.

MATLAB has numerous built-in functions that can be used to solve this matrix equation. A useful
operator to introduce is the backslash or left-divide operator, which is denoted by the symbol, \. The
command A\y is read, “A left-divides y.” The following paragraphs show how MATLAB can be used
to find solutions to matrix equations and some rationale behind each of the cases.

WARNING! It is extremely important to note that the left-divide operator can also return a solution
for x when there is no solution to the matrix equation. The reason for this is covered in more detail
in the next chapter on least-squares regression. Because of operational quirks like this, it is critical
to have an understanding of how any solution algorithm you use works.

Case 1: There is no solution for x . If rank([A, y]) = rank(A) + 1, then y is linearly independent
from the columns of A. Therefore y is not in the range of A and by definition, there cannot be
an x that satisfies the equation. Thus, comparing rank([A, y]) and rank(A) provides an easy way
to check if there are no solutions to a system of linear equations. Avoid using A\y to give you a
solution until you understand why you would want to do this in the next chapter.

Case 2: There is a unique solution for x . If rank([A, y]) = rank(A), then y can be written as a
linear combination of the columns of A and there is at least one solution for the matrix equation.
For there to be only one solution, rank(A) = n must also be true. In other words, the number of
equations must be exactly equal to the number of unknowns.To see why property results in a unique
solution, consider the following three relationships between m and n : m < n, m = n, and m > n.

1. For the case where m < n, rank(A) = n cannot possibly be true because this means we have a
“fat” matrix with fewer equations than unknowns. Thus, we do not need to consider this subcase.

2. When m = n and rank(A) = n, then A is square and invertible. Since the inverse of a matrix is
unique, then the matrix equation Ax = y can be solved by multiplying each side of the equation,
on the left, by A−1. This results in A−1 Ax = A−1 y → I x = A−1 y → x = A−1 y, which gives
the unique solution to the equation. This unique solution can be found using x = inv.A/*y
or x = A\b.

3. If m > n, then there are more equations than unknowns. However if rank(A) = n, then it is
possible to choose n equations (i.e., rows of A) such that if these equations are satisfied, then
the remaining m − n equations will be also satisfied. In other words, they are redundant. If the
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m − n redundant equations are removed from the system, then the resulting system has an A
matrix that is n × n, and invertible. These facts are not proven in this text. The new system then
has a unique solution, which is valid for the whole system. This unique solution can be found
using x = A\b. The command x = inv.A/*y will return an error because A is not square.

Case 3: There is an infinite number of solutions for x . If rank([A, y]) = rank(A), then y is in the
range of A, and there is at least one solution for the matrix equation. However, if rank(A) < n, then
there is an infinite number of solutions. The reason for this fact is as follows: although it is not shown
here, if rank(A) < n, then there is at least one nonzero vector, n, that is in the null space of A 2. If n
is in the nullspace of A, then An = 0 by definition. Now let x∗ be a solution to the matrix equation
Ax = y; then necessarily, Ax∗ = y. However, Ax∗ + An = y or A(x∗ +n) = y. Therefore, x∗ +n
is also a solution for Ax = y. In fact, since A is a linear transformation, x∗ + αn is a solution for
any real number, α (you should try to show this on your own). Since there are an infinite number
of acceptable values for α, there are an infinite number of solutions for the matrix equation.

You can compute a particular solution to the equation using the command x = pinv.A/∗y.
Here the function pinv computes the “pseudo inverse” of A, which is discussed in more detail in
the next chapter on least squares regression.

The flow chart diagram shown in Figure 12.1 is a good procedure for solving systems of linear
equations in MATLAB. However, the solutions returned by MATLAB via this method may include
some numerical error due to the estimation procedures employed. While there are numerous factors
that contribute to this numerical error, the most important one relates to the general nature of the matrix
A. In particular, if A is ill-conditioned, this inversion process will produce significant and problematic
numerical errors, the nature of which is beyond of the scope of this book.

EXAMPLE: Illustration of Case 1. We pick a matrix A and a vector y such that y is not in the
range of A. Therefore, there is no solution to the matrix equation.

1Actually there are an infinite number of null space vectors under these conditions.
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FIGURE 12.1

Illustration of the process for finding the solution to a linear system. There are three scenarios: (1) If y is not
in the range of A, there is no solution; (2) If y is in the range of A and the rank of A is equal to the number
of unknowns, there is a unique solution; or (3) if y is in the range of A and the rank of A is not equal to the
number of unknowns, there is an infinity of solutions.

EXAMPLE: Illustration of Case 2. We pick a matrix A and a vector y such that y is in the range
of A, and such that the rank of A is equal to the number of unknowns.



190 CHAPTER 12 Linear Algebra and Systems of Linear Equations

We also give an example with square matrices:
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The last command produces the expected result; that is, the result of the inversion of the matrix.
It can also be obtained as follows:

which produces a result with better numerical accuracy. To check that it does what it is supposed
to do, we can see that

Now if we augment A by one row at the bottom, so it is not square anymore, we get a nonsquare
matrix. Let us look at what needs to be done in this case:

If we reiterate the previous process, we get:

There is a solution to this system since it was constructed this way (i.e., y was obtained by
multiplication of x by A). We can solve for this solution using the commands
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Note that using the inverse command would not work in this case because the matrix A is not
square.

EXAMPLE: Illustration of Case 3. We first illustrate this case with a square matrix.

The first line defines the following matrix:

We can quickly check that the matrix is not invertible (i.e., that its determinant is 0). Looking
at the set of commands just above, it is clear that y is in the range of A since it has been obtained
by multiplication of [1;1;1;0] by A.

Now the pinv command computes the pseudo inverse of A, which when applied to y produces
a solution for this equation.
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We can indeed check that A*x returns the expected result.

We can also verify that the following command > > A*[0;0;0;1] produces zero; that is,
[0;0;0;1] is in the null space of A:

Thus, if we add [0;0;0;100] to the previously obtained solution of the system, and then
check that it still a solution using the command A*(x+[0;0;0;100]), we get the same result
as expected.

To investigate the example of a nonsquare matrix, let us consider the following script:
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It will produce the following results:

At this stage, we just checked that this x is a solution to the problem. Let us now look at the
following x:
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This value for x is also a solution to the problem; therefore, there are an infinite number of
solutions. If we find a solution for x using pinv, it will return the following:

which is a good numerical approximation of the x above. Now we continue to execute the script
and compute vectors in the nullspace.

As expected, when multiplying the vector x+31*n1+202*n2+87*n3+42*n4 by A, we
obtain the same result as if we were just computing Ax , with some small numerical error:

Summary
1. Linear algebra is the foundation of many engineering fields.
2. Vectors can be considered as points in Rn ; addition and multiplication are defined on them, although

not necessarily the same as for scalars.
3. A set of vectors is linearly independent if none of the vectors can be written as a linear combination

of the others.
4. Matrices are tables of numbers. They have several important properties including the determinant,

rank, and inverse.
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5. A system of linear equations can be represented by the matrix equation Ax = y.
6. The number of solutions to a system of linear equations is related to the rank(A) and the rank([A, y]).

It can be zero, one, or infinity.

Vocabulary
angle between vectors irrational number range
augmented matrix L2 norm rank
backslash L∞ norm rational number
coefficient left division real number
column vector linear combination row vector
complex number linear equation scalar
condition number linear transformation scalar multiplication
cross product linearly dependent set
determinant linearly independent singular
domain matrix solution
dot product matrix form square matrix
empty set matrix multiplication such that
full rank minus system of linear equations
identity matrix natural number transpose
ill conditioned nonsingular union
inner matrix dimensions norm vector
integer nullspace vector addition
intersect orthogonal whole number
inverse outer matrix dimensions zero vector
invertible p-norm

Functions and Operators
\ inv range
cond null rank
det pinv

Problems

1. Show that matrix multiplication distributes over matrix addition: show A(B + C) = AB + AC
assuming that A, B, and C are matrices of compatible size.

2. Write a function with header [out] = myIsOrthogonal(v1,v2, tol), where v1 and
v2 are column vectors of the same size and tol is a scalar value strictly larger than 0. The
output argument, out, should be 1 if the angle between v1 and v2 is within tol of π/2; that is,
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|π/2 − θ | < tol, and 0 otherwise. You may assume that v1 and v2 are column vectors of the
same size, and that tol is a positive scalar.

Test Cases:

3. Write a function with header [out] = myIsSimilar(s1,s2,tol) where s1 and s2
are strings, not necessarily the same size, and tol is a scalar value strictly larger than 0. From
s1 and s2, myIsSimilar should construct two vectors, v1 and v2, where v1(1) is the
number of 'a's in s1, v1(2) is the number 'b's in s1, and so on until v1(26), which is
the number of 'z's in v1. The vector v2 should be similarly constructed from s2. The output
argument, out, should be 1 if the absolute value of the angle between v1 and v2 is less than
tol; that is, |θ | < tol.

4. Write a function with header [B] = myMakeLinInd(A), where A and B are matrices. Let
the rank(A) = n. Then B should be a matrix containing the first n columns of A that are all
linearly independent. Note that this implies that B is full rank.

Test Cases:
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5. Cramer’s rule is a method of computing the determinant of a matrix. Consider an n × n square
matrix M . Let M(i, j) be the element of M in the i-th row and j-th column of M , and let mi, j

be the minor of M created by removing the i-th row and j-th column from M . Cramer’s rule
says that

det(M) =
n∑

i=1

( − 1)i−1 M(1, i)det(mi, j ).

Write a function with header [D] = myRecDet(M), where D is det(M). myRecDet
should use Cramer’s rule to compute the determinant, not MATLAB’s function det.

6. What is the complexity of myRecDet in the previous problem? Do you think this is an effective
way of determining if a matrix is singular or not?

7. Let p be a vector with length L containing the coefficients of a polynomial of order L-1. For
example, the vectorp = [1; 0; 2] is a representation of the polynomial f (x) = 1x2+0x+
2. Write a function with header [D] = myPolyDerMat(p), where p is the aforementioned
vector, and D is the matrix that will return the coefficients of the derivative of p when p is left
multiplied by D. For example, the derivative of f (x) is f '(x) = 2x , and therefore, d = Dp
should yield d = [2; 0]. Note this implies that the dimension of D is L − 1 × L . The point
of this problem is to show that integrating polynomials is actually a linear transformation.

8. Write a function with header [N, x] = myNumSols(A,b), where A and b are a matrix
and compatibly-sized column vector, respectively; N is the number of solutions of the system
Ax = b; and x is a solution to the same system. If there are no solutions to the system of
equations, then x should be an empty matrix. If there is one or an infinite number of solutions,
thenmyNumSols should return one using the methods described in the chapter. You may assume
that b is a column vector and that the number of elements in b is the same as the number of
rows in A. The output x should be a column vector. You may assume that if the system has an
infinite number of solutions, then the A matrix will have more columns than rows; that is, A is
fat. In this case, you should solve the system using x = pinv(A)*b.

Test Cases:
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9. Consider the following network consisting of two power supply stations denoted by S1 and
S2 and five power recipient nodes denoted by N1 to N5. The nodes are connected by power
lines, which are denoted by arrows, and power can flow between nodes along these lines in both
directions.

Let di be a positive scalar denoting the power demands for node i, and assume that this
demand must be met exactly. The capacity of the power supply stations is denoted by S. Power
supply stations must run at their capacity. For each arrow, let f j be the power flow along that
arrow. Negative flow implies that power is running in the opposite direction of the arrow.

Write a function with header [f] = myFlowCalculator(S, d), where S is a 1 × 2
vector representing the capacity of each power supply station, and d is a 1 × 5 row vector
representing the demands at each node (i.e.,d(1) is the demand at node 1). The output argument,
f, should be a 1×7 row vector denoting the flows in the network (i.e., f (1) = f1 in the diagram).
The flows contained in f should satisfy all constraints of the system, like power generation and
demands. Note that there may be more than one solution to the system of equations.

The total flow into a node must equal the total flow out of the node plus the demand; that is,
for each node i, finflow = foutflow + di . You may assume that �S j = �di .
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Test Cases:

10. Show that the dot product distributes across vector addition; that is, show that u · (v + w) =
u · v + u · w.
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Motivation
Often in physics and engineering coursework, we are asked to determine the state of a system given the
parameters of the system. For example, the relationship between the force exerted by a linear spring,
F , and the displacement of the spring from its natural length, x , is usually represented by the model

F = kx,

where k is the spring stiffness. We are then asked to compute the force for a given k and x value.
However in practice, the stiffness and in general, most of the parameters of a system, are not known
a priori. Instead, we are usually presented with data points about how the system has behaved in the
past. For our spring example, we may be given (x, F) data pairs that have been previously recorded
from an experiment. Ideally, all these data points would lie exactly on a line going through the origin
(since there is no force at zero displacement). We could then measure the slope of this line and get our
stiffness value for k. However, practical data usually has some measurement noise because of sensor
inaccuracy, measurement error, or a variety of other reasons. Figure 13.1 shows an example of what
data might look like for a simple spring experiment.

This chapter teaches methods of finding the “most likely” model parameters given a set of data; for
example, how to find the spring stiffness in our mock experiment. By the end of this chapter you should
understand how these methods choose model parameters, the importance of choosing the correct model,
and how to implement these methods in MATLAB.

An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00013-0
© 2015 Elsevier Inc. All rights reserved.
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FIGURE 13.1

Results from force-displacement experiment for spring (fictional). The theoretical linear relationship between
force and displacement in a linear spring is F = kx . What do you think k should be given as the experimental
data?

13.1 Least Squares Regression Problem Statement
Given a set of independent data points xi and dependent data points yi , i = 1, . . . , m, we would like
to find an estimation function, ŷ(x), that describes the data as well as possible. Note that ŷ can be
a function of several variables, but for the sake of this discussion, we restrict the domain of ŷ to be
a single variable. In least squares regression, the estimation function must be a linear combination of
basis functions, fi (x). That is, the estimation function must be of the form

ŷ(x) =
n∑

i=1

αi fi (x)

The scalars αi are referred to as the parameters of the estimation function, and each basis function
must be linearly independent from the others. In other words, in the proper “functional space” no basis
function should be expressible as a linear combination of the other functions. Note: In general, there
are significantly more data points, m, than basis functions, n (i.e., m >> n).

TRY IT! Create an estimation function for the force-displacement relationship of a linear spring.
Identify the basis function(s) and model parameters.
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The relationship between the force, F , and the displacement, x , can be described by the function
F(x) = kx where k is the spring stiffness. The only basis function is the function f1(x) = x and
the model parameter to find is α1 = k.

The goal of least squares regression is to find the parameters of the estimation function that minimize
the total squared error, E , defined by E = ∑m

i=1 (ŷ − yi )
2. The individual errors or residuals are

defined as ei = (ŷ − yi ). If e is the vector containing all the individual errors, then we are also trying
to minimize E = ‖e‖2

2, which is the L2 norm defined in the previous chapter.
In the next two sections we derive the least squares method of finding the desired parameters. The

first derivation comes from linear algebra, and the second derivation comes from multivariable calculus.
Although they are different derivations, they lead to the same least squares formula. You are free to
focus on the section with which you are most comfortable.

13.2 Least Squares Regression Derivation (Linear Algebra)
First, we enumerate the estimation of the data at each data point xi .

ŷ(x1) = α1 f1(x1) + α2 f2(x1) + · · · + αn fn(x1),

ŷ(x2) = α1 f1(x2) + α2 f2(x2) + · · · + αn fn(x2),

· · ·
ŷ(xm) = α1 f1(xm) + α2 f2(xm) + · · · + αn fn(xm).

Let X ∈ R
n be a column vector such that the i-th element of X contains the value of the i-th x-data point,

xi , Ŷ be a column vector with elements, Ŷi = ŷ(xi ), β be a column vector such that βi = αi , Fi (x) be
a function that returns a column vector of fi (x) computed on every element of x , and A be an m × n
matrix such that the i-th column of A is Fi (x). Given this notation, the previous system of equations
becomes Ŷ = Aβ.

Now if Y is a column vector such that Yi = yi , the total squared error is given by E = ‖Ŷ − Y‖2
2.

You can verify this by substituting the definition of the L2 norm. Since we want to make E as small
as possible and norms are a measure of distance, this previous expression is equivalent to saying that
we want Ŷ and Y to be a “close as possible.” Note that in general Y will not be in the range of A and
therefore E > 0.

Consider the following simplified depiction of the range of A; see Figure 13.2. Note this is not a plot
of the data points (xi , yi ).

From observation, the vector in the range of A, Ŷ , that is closest to Y is the one that can point
perpendicularly to Y . Therefore, we want a vector Y − Ŷ that is perpendicular to the vector Ŷ .

Recall from the chapter on Linear Algebra that two vectors are perpendicular, or orthogonal, if
their dot product is 0. Noting that the dot product between two vectors, v and w, can be written as
dot(v,w) = vT w, we can state that Ŷ and Y − Ŷ are perpendicular if dot(Ŷ , Y − Ŷ ) = 0; therefore,
Ŷ T (Y − Ŷ ) = 0, which is equivalent to (Aβ)T (Y − Aβ) = 0.
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FIGURE 13.2

Illustration of the L2 projection of Y on the range of A.

Noting that for two matrices A and B, (AB)T = BT AT and using distributive properties of vector
multiplication, this is equivalent to βT AT Y − βT AT Aβ = βT (AT Y − AT Aβ) = 0. The solution,
β = 0, is a trivial solution, so we use AT Y − AT Aβ = 0 to find a more interesting solution. Solving
this equation for β gives the least squares regression formula:

β = (AT A)−1 AT Y

Note that (AT A)−1 AT is called the pseudo-inverse of A and exists when m > n and A has linearly
independent columns. Proving the invertibility of (AT A) is outside the scope of this book, but it is
always invertible except for some pathological cases.

13.3 Least Squares Regression Derivation (Multivariable Calculus)
Recall that the total error for m data points and n basis functions is:

E =
m∑

i=1

e2
i =

m∑
i=1

(ŷ(xi ) − yi )
2 =

m∑
i=1

⎛
⎝

n∑
j=1

α j f j (xi ) − yi

⎞
⎠

2

.

which is an n-dimensional paraboloid in αk . From calculus, we know that the minimum of a paraboloid
is where all the partial derivatives equal zero. So taking partial derivative of E with respect to the variable
αk (remember that in this case the parameters are our variables), setting the system of equations equal
to 0 and solving for the αk’s should give the correct results.

The partial derivative with respect to αk and setting equal to 0 yields:

∂ E

∂αk
=

m∑
i=1

2

⎛
⎝

n∑
j=1

α j f j (xi ) − yi

⎞
⎠ fk(xi ) = 0.
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With some rearrangement, the previous expression can be manipulated to the following:
m∑

i=1

n∑
j=1

α j f j (xi ) fk(xi ) −
m∑

i=1

yi fk(xi ) = 0,

and further rearrangement taking advantage of the fact that addition commutes results in:
n∑

j=1

α j

m∑
i=1

f j (xi ) fk(xi ) =
m∑

i=1

yi fk(xi ).

Now let X be a column vector such that the i-th element of X is xi and Y similarly constructed, and
let Fj (X) be a column vector such that the i-th element of Fj (X) is f j (xi ). Using this notation, the
previous expression can be rewritten in vector notation as:

[
FT

k (X)F1(X), FT
k (X)F2(X), . . . , FT

k (X)Fj (X), . . . , FT
k (X)Fn(X)

]

⎡
⎢⎢⎢⎢⎢⎢⎣

α1
α2
· · ·
α j

· · ·
αn

⎤
⎥⎥⎥⎥⎥⎥⎦

= FT
k (X)Y .

If we repeat this equation for every k, we get the following system of linear equations in matrix form:
⎡
⎢⎢⎢⎢⎢⎣

FT
1 (X)F1(X), FT

1 (X)F2(X), . . . , FT
1 (X)Fj (X), . . . , FT

1 (X)Fn(X)

FT
2 (X)F1(X), FT

2 (X)F2(X), . . . , FT
2 (X)Fj (X), . . . , FT

2 (X)Fn(X)

· · · · · ·
FT

n (X)F1(X), FT
n (X)F2(X), . . . , FT

n (X)Fj (X), . . . , FT
n (X)Fn(X)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

α1
α2
· · ·
α j
· · ·
αn

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

FT
1 (X)Y

FT
2 (X)Y

· · ·
FT

n (X)Y

⎤
⎥⎥⎥⎥⎥⎦

.

If we let A = [F1(X), F2(X), . . . , Fj (X), . . . , Fn(X)] and β be a column vector such that j-th element
of β is α j , then the previous system of equations becomes

AT Aβ = AT Y ,

and solving this matrix equation for β gives β = (AT A)−1 AT Y , which is exactly the same formula as
the previous derivation.

13.4 Least Squares Regression in MATLAB®

Recall that if we enumerate the estimation of the data at each data point, xi , this gives us the following
system of equations:

ŷ(x1) = α1 f1(x1) + α2 f2(x1) + · · · + αn fn(x1),

ŷ(x2) = α1 f1(x2) + α2 f2(x2) + · · · + αn fn(x2),

· · ·
ŷ(xm) = α1 f1(xm) + α2 f2(xm) + · · · + αn fn(xm).
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If the data was absolutely perfect (i.e., no noise), then the estimation function would go through all the
data points, resulting in the following system of equations:

y1 = α1 f1(x1) + α2 f2(x1) + · · · + αn fn(x1),

y2 = α1 f1(x2) + α2 f2(x2) + · · · + αn fn(x2),

· · ·
ym = α1 f1(xm) + α2 f2(xm) + · · · + αn fn(xm).

If we take A to be as defined previously, this would result in the matrix equation

y = Ax .

However, since the data is not perfect, there will not be an estimation function that can go through all
the data points, and this system will have no solution. However, recall in the previous chapter that x =
A\y would return a solution even if no solution existed. It turns out the solution returned by MATLAB
for this command is the least squares solution derived in the previous two sections. In other words, if
there is a solution, x = A\y will return one, otherwise it will return the x that is the closest to being a
solution to the matrix equation.

The pseudo-inverse for of A can be computed using the MATLAB function pinv, which you have
already used in the previous chapter to solve systems of linear equations.

TRY IT! For the matrix A = [1 2; 3 4; 5 6] and the vector y = [4; 1; 2], show
that x = inv (A’*A)*A’*y, x = pinv (A)*y, and x = A\y all produce the same result
for x.

TRY IT! Consider the artificial data created by x = 0:.01:1 and y = 1 + x + x.*rand
(size (x));. Do a least squares regression with an estimation function defined by
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ŷ(x) = α1x + α2. Plot the data points along with the least squares regression line, as shown in
the Figure 13.3. Note that we expect α1 = 1 and α2 = 1.5 based on this data.

FIGURE 13.3

Plotting resulting from execution of previous code. Estimation data and regression curve ŷ (x) = α1x+α2.

13.5 Log Tricks for Nonlinear Estimation Functions
Least squares regression requires that the estimation function be a linear combination of basis functions.
However, there are some functions that cannot be put in this form but where a least squares regression
is still appropriate. We can accomplish this by taking advantage of the properties of logarithms.
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Assume you have a function of the form ŷ(x) = αeβx and data for x and y, and that you want
to do least squares regression to find α and β. Clearly, the previous set of basis functions (linear)
would be an inappropriate choice to describe ŷ(x). However, if we take the log of both sides, we get
log (ŷ(x)) = log (α) + βx . Now if we say that ỹ(x) = log (ŷ(x)) and α̃ = log (α), then we get
ỹ(x) = α̃ + βx . We can perform least squares regression on the linearized expression to find ỹ(x), α̃,
and β, and then recover α by using the expression α = eα̃ .

Summary
1. Mathematical models are used to understand, predict, and control engineering systems. These models

consist of parameters that govern the way the model behaves.
2. Given a set of experimental data, least squares regression is a method of finding a set of model

parameters that fits the data well. That is, it minimizes the squared error between the model, or
estimation function, and the data points.

3. In least squares regression, the estimation function must be a linear combination of linearly inde-
pendent basis functions.

4. The set of parameters β can be determined by the least squares equation β = (AT A)−1 AT Y , where
the j-th column of A is the j-th basis function evaluated at each X data point.

Vocabulary
basis function parameters residuals
estimation function pseudo-inverse total squared error
least squares regression

Functions and Operators
\ polyfit
pinv polyval

Problems

1. Repeat the multivariable calculus derivation of the least squares regression formula for an esti-
mation function ŷ(x) = ax2 + bx + c where a, b, and c are the parameters.

2. Write a function with header [Beta] = myLSParams (f, x, y), where x and y are
column vectors of the same size containing experimental data, and f is a cell array with each
element a function handle to a basis vector of the estimation function. The output argument,
Beta, should be a column vector of the parameters of the least squares regression forx,y, andf.

3. Write a function with header [alpha, beta] = myExpFit (x,y), where x and y are
column vectors of the same size containing experimental data, and alpha and beta are the
parameters of the estimation function ŷ(x) = αeβx .
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4. Given four data points (xi , yi ) and the parameters for a cubic polynomial ŷ(x) = ax3+bx2+cx+
d, what will be the total error associated with the estimation function ŷ(x)? Where can we place
another data point (x,y) such that no additional error is incurred for the estimation function?

5. Write a function with header [beta] = myLinRegression (f, x, y), where f is a
cell array containing function handles to basis functions, and x and y are column vectors con-
taining noisy data. Assume that x and y are the same length, and that the functions contained in
f are vectorized.

Let an estimation function for the data contained in x and y be defined as ŷ(x) = β(1) ·
f1(x) + β(2) · f2(x) + · · · + β(n) · fn(x), where n is the length of f. Your function should
compute beta according to the least squares regression formula.

Test Case: Note that your solution may vary by a little bit depending on the random numbers
generated.
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6. Write a function with header [alpha, beta] = myExpRegression (x,y), where x
and y are column vectors of the same size.

Let an estimation function for the data contained in x and y be defined as ŷ(x) = αeβx .
Your function should compute α and β as the solution to the least squares regression formula.
To accomplish this, you should first linearize the estimation function according to the methods
specified in Section 13.5.

Test Cases: Note that your solution may vary from the test case slightly depending on the
random numbers generated.
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Motivation
The previous chapter used regression to find the parameters of a function that best estimated a set of data
points. Regression assumes that the data set has measurement errors, and that you need to find a set of
model parameters that minimize the error between your model and the data. However, sometimes you
have measurements that are assumed to be very reliable; in these cases, you want an estimation function
that goes through the data points you have. This technique is commonly referred to as interpolation.

By the end of the chapter, you should be able to understand and compute some of those most common
interpolating functions.

14.1 Interpolation Problem Statement
Assume we have a data set consisting of independent data values, xi , and dependent data values, yi ,
where i = 1, . . . , n. We would like to find an estimation function ŷ(x) such that ŷ(xi ) = yi for every
point in our data set. This means the estimation function goes through our data points. Given a new
x∗, we can interpolate its function value using ŷ(x∗). In this context, ŷ(x) is called an interpolation
function. Figure 14.1 shows the interpolation problem statement.

Unlike regression, interpolation does not require the user to have an underlying model for the data,
especially when there are many reliable data points. However, the processes that underly the data must
still inform the user about the quality of the interpolation. For example, our data may consist of (x, y)

coordinates of a car over time. Since motion is restricted to the maneuvering physics of the car, we can
expect that the points between the (x, y) coordinates in our set will be “smooth” rather than jagged.

In the following sections we derive several common interpolation methods.

An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00014-2
© 2015 Elsevier Inc. All rights reserved.
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FIGURE 14.1

Illustration of the interpolation problem: estimate the value of a function in between data points.

14.2 Linear Interpolation
In linear interpolation, the estimated point is assumed to lie on the line joining the nearest points to
the left and right. Assume, without loss of generality, that the x-data points are in ascending order; that
is, xi < xi+1, and let x be a point such that xi < x < xi+1. Then the linear interpolation at x is

ŷ(x) = yi + (yi+1 − yi )(x − xi )

(xi+1 − xi )
.

TRY IT! Find the linear interpolation at x = 1.5 based on the data x = [0 1 2], y = [1
3 2]. Verify the result using MATLAB’s function interp1. (See Figure 14.2.)

FIGURE 14.2

Linear interpolation of the points x = (0, 1, 2) and y = (1, 3, 2).
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Since 1 < x < 2, we use the second and third data points to compute the linear interpolation.
Plugging in the corresponding values gives

ŷ(x) = yi + (yi+1 − yi )(x − xi )

(xi+1 − xi )
= 3 + (2 − 3)(1.5 − 1)

(2 − 1)
= 2.5

14.3 Cubic Spline Interpolation
In cubic spline interpolation (Figure 14.3), the interpolating function is a set of piecewise cubic func-
tions. Specifically, we assume that the points (xi , yi ) and (xi+1, yi+1) are joined by a cubic polynomial
Si (x) = ai x3 + bi x2 + ci x + di that is valid for xi ≤ x ≤ xi+1 for i = 1, . . . , n − 1. To find the inter-
polating function, we must first determine the coefficients ai , bi , ci , di for each of the cubic functions.
For n points, there are n − 1 cubic functions to find, and each cubic function requires four coefficients.
Therefore we have a total of 4(n − 1) unknowns, and so we need 4(n − 1) independent equations to
find all the coefficients.

First we know that the cubic functions must intersect the data the points on the left and the right:

Si (xi ) = yi , i = 1, . . . , n − 1,

Si (xi+1) = yi+1, i = 1, . . . , n − 1,

which gives us 2(n − 1) equations. Next, we want each cubic function to join as smoothly with its
neighbors as possible, so we constrain the splines to have continuous first and second derivatives at the
data points i = 2, . . . , n − 1.

S′
i (xi+1) = S′

i+1(xi+1), i = 1, . . . , n − 2,

FIGURE 14.3

Illustration of cubic spline interpolation.
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S′′
i (xi+1) = S′′

i+1(xi+1), i = 1, . . . , n − 2,

which gives us 2(n − 2) equations.
Two more equations are required to compute the coefficients of Si (x). These last two constraints

are arbitrary, and they can be chosen to fit the circumstances of the interpolation being performed. A
common set of final constraints is to assume that the second derivatives are zero at the endpoints. This
means that the curve is a “straight line” at the end points. Explicitly,

S′′
1 (x1) = 0

S′′
n−1(xn) = 0.

Note that these constraints are not the same as the ones used by MATLAB’s interp1 for performing
cubic splines, which adds constraints that preserve monotonicity and local extreme points (see the help
for interp1 to learn more about this).

TRY IT! Use interp1 to plot the cubic spline interpolation of the data set x = [0 1 2] and
y = [1 3 2] for 0 ≤ x ≤ 2. (See Figure 14.4.)

FIGURE 14.4

Resulting plot of previous code. Cubic spline interpolation of the points x = (0, 1, 2) and y = (1, 3, 2).
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To determine the coefficients of each cubic function, we write out the constraints explicitly as a
system of linear equations with 4(n −1) unknowns. For n data points, the unknowns are the coefficients
ai , bi , ci , di of the cubic spline, Si joining the points xi and xi+1.

For the constraints Si (xi ) = yi we have:

a1x3
1+ b1x2

1+ c1x1+ d1 = y1,

a2x3
2+ b2x2

2+ c2x2+ d2 = y2,

· · ·
an−1x3

n−1+ bn−1x2
n−1+ cn−1xn−1+ dn−1 = yn−1.

For the constraints Si (xi+1) = yi+1 we have:

a1x3
2+ b1x2

2+ c1x2+ d1 = y2,

a2x3
3+ b2x2

3+ c2x3+ d2 = y3,

· · ·
an−1x3

n+ bn−1x2
n+ cn−1xn+ dn−1 = yn .

For the constraints S′
i (xi+1) = S′

i+1(xi+1) we have:

3a1x2
2+ 2b1x2+ c1− 3a2x2

2− 2b2x2− c2 = 0,

3a2x2
3+ 2b2x3+ c2− 3a3x2

3− 2b3x3− c3 = 0,

· · · ,

3an−2x2
n−1+ 2bn−2xn−1+ cn−2− 3an−1x2

n−1− 2bn−1xn−1− cn−1 = 0.

For the constraints S′′
i (xi+1) = S′′

i+1(xi+1) we have:

6a1x2+ 2b1− 6a2x2− 2b2 = 0,

6a2x3+ 2b2− 6a3x3− 2b3 = 0,

+ . . . −
6an−2xn−1+ 2bn−2− 6an−1xn−1− 2bn−1 = 0.

Finally for the endpoint constraints S′′
1 (x1) = 0 and S′′

n−1(xn) = 0, we have:

6a1x1+ 2b1 = 0,

6an−1xn+ 2bn−1 = 0.

These equations are linear in the unknown coefficients ai , bi , ci , and di . We can put them in matrix
form and solve for the coefficients of each spline by left division. Remember that whenever we solve
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the matrix equation Ax = b for x , we must make be sure that A is square and invertible. In the case of
finding cubic spline equations, the A matrix is always square and invertible as long as the xi values in
the data set are unique.

TRY IT! Find the cubic spline interpolation at x = 1.5 based on the data x = [0 1 2],
y = [1 3 2].

First we create the appropriate system of equations and find the coefficients of the cubic splines
by solving the system in matrix form.

The matrix form of the system of equations is:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
0 0 0 0 8 4 2 1
3 2 1 0 −3 −2 −1 0
6 2 0 0 −6 −2 0 0
0 2 0 0 0 0 0 0
0 0 0 0 12 2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
b1
c1
d1
a2
b2
c2
d2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
3
2
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By left division, we get the following results from MATLAB:

Therefore, the two cubic polynomials are

S1(x) = −.75x3 + 2.75x + 1, for 0 ≤ x ≤ 1 and

S2(x) = .75x3 − 4.5x2 + 7.25x − .5, for 1 ≤ x ≤ 2

So for x = 1.5 we evaluate S2(1.5) and get an estimated value of 2.7813.

14.4 Lagrange Polynomial Interpolation
Rather than finding cubic polynomials between subsequent pairs of data points, Lagrange polynomial
interpolation finds a single polynomial that goes through all the data points. This polynomial is referred
to as a Lagrange polynomial, L(x), and as an interpolation function, it should have the property



14.4 Lagrange Polynomial Interpolation 217

L(xi ) = yi for every point in the data set. For computing Lagrange polynomials, it is useful to write
them as a linear combination of Lagrange basis polynomials, Pi (x), where

Pi (x) =
n∏

j=1, j �=i

x − x j

xi − x j
,

and

L(x) =
n∑

i=1

yi Pi (x).

Here,
∏

means “the product of” or “multiply out.”
You will notice that by construction, Pi (x) has the property that Pi (x j ) = 1 when i = j and

Pi (x j ) = 0 when i �= j . Since L(x) is a sum of these polynomials, you can observe that L(xi ) = yi

for every point, exactly as desired.

TRY IT! Find the Lagrange basis polynomials for the data set x = [0 1 2] and y = [1 3
2]. Plot each polynomial (Figure 14.5) and verify the property that Pi (x j ) = 1 when i = j and
Pi (x j ) = 0 when i �= j .

P1(x) = (x − x2)(x − x3)

(x1 − x2)(x1 − x3)
= (x − 1)(x − 2)

(0 − 1)(0 − 2)
= 1

2
(x2 − 3x + 2),

P2(x) = (x − x1)(x − x3)

(x2 − x1)(x2 − x3)
= (x − 0)(x − 2)

(1 − 0)(1 − 2)
= −x2 + 2x,

P3(x) = (x − x1)(x − x2)

(x3 − x1)(x3 − x2)
= (x − 0)(x − 1)

(2 − 0)(2 − 1)
= 1

2
(x2 − x).

FIGURE 14.5

Lagrange basis polynomials for test data. By design, Pi (xj ) = 1 when i = j , and Pi (xj ) = 0 when i �= j .
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TRY IT! For the previous example, compute and plot the Lagrange polynomial (Figure 14.6) and
verify that it goes through each of the data points.

FIGURE 14.6

Resulting plot of previous code. As expected, the Lagrange polynomials goes through each of the data
points.
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WARNING! Lagrange interpolation polynomials are defined outside the area of interpolation—
outside of the interval [x1, xn]—but grow very fast and unbounded outside this region. This is
not a desirable feature because in general, this is not the behavior of the underlying data. Thus, a
Lagrange interpolation should never be used to interpolate outside this region.

Summary
1. Given a set of reliable data points, interpolation is a method of estimating dependent variable values

for independent variable values not in our data set.
2. Linear, Cubic Spline, and Lagrange interpolation are common interpolating methods.

Vocabulary
cubic-spline interpolation Lagrange basis polynomial Lagrange polynomial interpolation
interpolate Lagrange polynomial linearly interpolation
interpolation function

Functions and Operators
interp1

Problems
1. Write a function with header [Y] = myLinInterp(x,y,X), where x and y are column

vectors containing experimental data points, and X is an array. Assume that x and X are in
ascending order and have unique elements. The output argument, Y, should be a vector, the same
size as X, where Y(i) is the linear interpolation of X(i). You may not use interp1.

2. Write a function with header [Y] = myCubicSpline(x,y,X), where x and y are column
vectors containing experimental data points, and X is an array. Assume that x and X are in
ascending order and have unique elements. The output argument, Y, should be a vector, the same
size as X, where Y(i) is the cubic spline interpolation of X(i). You may not use interp1.

3. Write a function with header [Y] = myNearestNeighbor(x,y,X), where x and y are
column vectors containing experimental data points, and X is an array. Assume that x and X are in
ascending order and have unique elements. The output argument, Y, should be a vector, the same
size as X, where Y(i) is the nearest neighbor interpolation of X(i). That is, Y(i) should be the
y(j) where x(j) is the closest independent data point to X(i). You may not use interp1.

4. Think of a situation where using nearest neighbor interpolation would be superior to cubic spline
interpolation.
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5. Write a function with header [Y] = myCubicSplineFlat(x,y,X), where x and y are
column vectors containing experimental data points, and X is an array. Assume that x and X are
in ascending order and have unique elements. The output argument, Y, should be a vector, the
same size as X, where Y(i) is the cubic spline interpolation of X(i). However, instead of the
standard “clamped” endpoint constraints, use S′

1(x1) = 0 and S′
n−1(xn) = 0.

6. Write a function with header [Y] = myQuinticSpline(x,y,X), where x and y are col-
umn vectors containing experimental data points, and X is an array. Assume that x and X are in
ascending order and have unique elements. The output argument, Y, should be a vector, the same
size as X, where Y(i) is the quintic spline interpolation of X(i). You will need to use additional
endpoint constraints to come up with enough constraints. You may use endpoint constraints at
your discretion.

7. Write a function with header[] = myInterpPlotter(x,y, X, option), wherex and
y are column vectors containing x and y data points, and X is a column vector containing the
coordinates for which an interpolation is desired. The input argument option should be a string,
either ‘linear’, ‘spline’, or ‘nearest’. Your function should produce a plot of the data points (x, y)

marked as red circles, and the points (X , Y ), where X is the input vector and Y is the interpolation
at the points contained in X defined by the input argument specified by option. The points (X , Y )

should be connected by a blue line. Be sure to include title, axis labels, and a legend. Hint: You
should use the function interp1.

Test Cases:
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8. Write a function with header[Y] = myDCubicSpline(x,y, X, D), whereY is the cubic
spline interpolation at X taken from the data points contained in x and y. However, instead of
the standard pinned endpoint conditions (i.e., S′′

1 (x1) = 0 and S′′
n−1(xn) = 0) you should use

the endpoint conditions S′
1(x1) = D and S′

n−1(xn) = D (i.e., the slopes of the interpolating
polynomials at the endpoints is D). Note that there may be more than five data points. It may be
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a good idea to do an example by hand for three points (2 splines).

S′
i (xi+1) = S′

i+1(xi+1) for i = 1, . . . , n − 2

S′′
i (xi+1) = S′′

i+1(xi+1) for i = 1, . . . , n − 2.

Test Cases:

9. Write a function with header [Y] = myLagrange(x,y, X), where Y is the Lagrange inter-
polation of the data points contained in x and y computed at X. Hint: Use a nested for-loop, where
the inner for-loop computes the product for the Lagrange basis polynomial and the outer loop
computes the sum for the Lagrange polynomial.
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Test Cases:
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Motivation
Many functions such as sin (x) and cos (x) are useful for engineers, but they are impossible to compute
explicitly. In practice, these functions can be approximated by sums of functions that are easy to
compute, such as polynomials. In fact, most functions common to engineers cannot be computed without
approximations of this kind. Since these functions are used so often, it is important to know how these
approximations work and their limitations.

In this chapter, you will learn about Taylor series, which is one method of approximating complicated
functions. This chapter in no way takes the place of a full course on functional analysis, but it does
provide exposure that will be useful for subsequent chapters.

15.1 Expressing Functions with Taylor Series
A sequence is an ordered set of numbers denoted by the list of numbers inside parentheses. For example,
s = (s1, s2, s3, · · · ) means s is the sequence s1, s2, s3, · · · and so on. In this context, “ordered” means
that s1 comes before s2, not that s1 < s2. Many sequences have a more complicated structure. For
example, s = (n2, n ∈ N) is the sequence 0, 1, 4, 9, · · ·. A series is the sum of a sequence up to a certain
element. An infinite sequence is a sequence with an infinite number of terms, and an infinite series is
the sum of an infinite sequence.

A Taylor series expansion is a representation of a function by an infinite series of polynomials
around a point. Mathematically, the Taylor series of a function, f (x), is defined as:

f (x) =
∞∑

n=0

f (n)(a)(x − a)n

n! ,

where f (n) is the nth derivative of f and f (0) is the function f .

An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00015-4
© 2015 Elsevier Inc. All rights reserved.
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TRY IT! Compute the Taylor series expansion for f (x) = 5x2 +3x +5 around a = 0, and a = 1.
Verify that f and its Taylor series expansions are identical.

First compute derivatives analytically:

f (x) = 5x2 + 3x + 5

f ′(x) = 10x + 3

f ′′(x) = 10

Around a = 0:

f (x) = 5x0

0! + 3x1

1! + 10x2

2! + 0 + 0 + · · · = 5x2 + 3x + 5

Around a = 1:

f (x) = 13(x − 1)0

0! + 13(x − 1)1

1! + 10(x − 1)2

2! + 0 + · · ·
= 13 + 13x − 13 + 5x2 − 10x + 5 = 5x2 + 3x + 5

Note: The Taylor series expansion of any polynomial has finite terms because the nth derivative of
any polynomial is 0 for n large enough.

TRY IT! Write the Taylor series for sin (x) around the point a = 0.
Let f (x) = sin (x). Then according to the Taylor series expansion,

f (x) = sin (0)

0! x0 + cos (0)

1! x1 + − sin (0)

2! x2 + − cos (0)

3! x3 + sin (0)

4! x4 + cos (0)

5! x5 + · · · .

The expansion can be written compactly by the formula

f (x) =
∞∑

n=0

( − 1)n x2n+1

(2n + 1)! ,

which ignores the terms that contain sin (0) (i.e., the even terms). However, because these terms
are ignored, the terms in this series and the proper Taylor series expansion are off by a factor of
2n + 1; for example the n = 0 term in formula is the n = 1 term in the Taylor series, and the n = 1
term in the formula is the n = 3 term in the Taylor series.

15.2 Approximations with Taylor Series
Clearly, it is not useful to express functions as infinite sums because we cannot even compute them
that way. However, it is often useful to approximate functions by using an N th order Taylor series
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approximation of a function, which is a truncation of its Taylor expansion at some n = N . This
technique is especially powerful especially when there is a point around which we have knowledge
about a function for all its derivatives. For example, if we take the Taylor expansion of ex around a = 0,
then f (n)(a) = 1 for all n, we don’t even have to compute the derivatives in the Taylor expansion to
approximate ex !

TRY IT! Use MATLAB to plot the sin function along with the first, third, fifth, and seventh order
Taylor series approximations. Note that this is the zero-th to third term in the formula given earlier
(See Figure 15.1.).

FIGURE 15.1

Resulting plot of previous code. Successive orders of approximation of the sin function by its Taylor
expansion.
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As you can see, the approximation approaches the analytic function quickly, even for x not near
to a = 0.

TRY IT! Compute the seventh order Taylor series approximation for sin (x) around a = 0 at
x = π/2. Compare the value to the correct value, 1.

The seventh order Taylor series approximation is very close to the theoretical value of the
function even if it is computed far from the point around which the Taylor series was computed
(i.e., x = π/2 and a = 0).

The most common Taylor series approximation is the first order approximation, or linear approx-
imation. Intuitively, for “smooth” functions the linear approximation of the function around a point,
a, can be made as good as you want provided you stay sufficiently close to a. In other words,
“smooth” functions look more and more like a line the more you zoom into any point. This fact is
depicted in Figure 15.2. Linear approximations are useful tools when analyzing complicated functions
locally.
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FIGURE 15.2

Successive levels of zoom of a smooth function to illustrate the linear nature of functions locally.

TRY IT! Take the linear approximation for ex around the point a = 0. Use the linear approximation
for ex to approximate the value of e1 and e0.01. Use MATLAB’s function exp to compute exp(1)
and exp(0.01) for comparison.

The linear approximation of ex around a = 0 is 1 + x .
MATLAB’s exp function gives the following:

The linear approximation of e1 is 2, which is inaccurate, and the linear approximation of e0.01

is 1.01, which is very good. This example illustrates how the linear approximation becomes close
to the functions close to the point around which the approximation is taken.

Summary
1. Some functions can be perfectly represented by a Taylor series, an infinite sum of polynomials.
2. Functions that have a Taylor series expansion can be approximated by truncating its Taylor series.
3. The linear approximation is a common local approximation for functions.

Vocabulary
infinite sequence N th order Taylor series approximation Taylor series expansion
infinite series sequence
linear approximation series
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Functions and Operators
(none)

Problems

1. Use Taylor series expansions to show that eix = cos (x) + i sin (x), where i = √−1.

2. Use the linear approximation of sin (x) around a = 0 to show that sin (x)
x ≈ 1 for small x .

3. Write the Taylor series expansion for ex2
around a = 0. Write a function with header

[approx] = myDoubleExp(x, N), which computes an approximation of ex2
using the

first N terms of the Taylor series expansion. Be sure that myDoubleExp can take array inputs.
4. Write a function that gives the Taylor series approximation to the exp function around 0 for order

1 through 7.
5. Compute the fourth order Taylor expansion for sin (x) and cos (x) and sin (x) cos (x) around 0.

Which produces less error for x = π/2: computing the Taylor expansion for sin and cos separately
then multiplying the result together, or computing the Taylor expansion for the product first then
plugging in x?

6. Write a function with header [yApprox] = myCoshApproximator(x, n), where
yApprox is the n-th order Taylor Series approximation for cosh(x), the hyperbolic cosine of x,
taken around a = 0. You may assume that x is a vector and n is a positive integer (including 0).
Note that your function should be vectorized for x. Recall that

cosh(x) = (ex + e−x )/2.

Warning: The approximations for n = 0 and n = 1 will be equivalent, the approximations for
n = 2 and n = 3 will be equivalent, and so on.

Test Cases:
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Motivation
As the name suggests, the roots of a function are one of its most important properties. Finding the roots
of functions is important in many engineering applications such as signal processing and optimization.
For simple functions such as f (x) = ax2 + bx + c, you may already be familiar with the “quadratic
formula,”

xr = −b ± √
b2 − 4ac

2a
,

which gives xr , the two roots of f exactly. However for more complicated functions, the roots can rarely
be computed using such explicit, or exact, means.

By the end of this chapter, you should understand the root finding problem, and two algorithms for
finding roots to functions, their properties, and their limitations.

16.1 Root Finding Problem Statement
The root or zero of a function, f (x), is an xr such that f (xr ) = 0. For functions such as f (x) = x2 −9,
the roots are clearly 3 and −3. However, for other functions such as f (x) = cos(x) − x , determining
an analytic, or exact, solution for the roots of functions can be difficult. For these cases, it is useful to
generate numerical approximations of the roots of f and understand the limitations in doing so.

An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00016-6
© 2015 Elsevier Inc. All rights reserved.
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TRY IT! Use the fzero function to compute the root of f (x) = cos(x) − x near −2. Verify that
the solution given by fzero is a root (or close enough).

TRY IT! The function f (x) = 1
x has no root. Use the fzero function to try to compute the root of

f (x) = 1
x . Verify that the solution given from fzero is not a root of f by plugging the estimated

root value back into f .

Clearly F is large (i.e., f (x) �= 0) and so r is not a root. Understanding why a MATLAB function
would make this mistake requires knowledge about the function being analyzed and understanding how
the algorithms for finding roots work.

16.2 Tolerance
In engineering, error is a deviation from an expected or computed value. Tolerance is the level of
error that is acceptable for an engineering application. We say that a computer program has converged
to a solution when it has found a solution with an error smaller than the tolerance. When computing
roots numerically, or conducting any other kind of numerical analysis, it is important to establish both
a metric for error and a tolerance that is suitable for a given engineering application.

For computing roots, we want an xr such that f (xr ) is very close to 0. Therefore | f (x)| is a possible
choice for the measure of error since the smaller it is, the likelier we are to a root. Also if we assume
that xi is the i th guess of an algorithm for finding a root, then |xi+1 − xi | is another possible choice
for measuring error, since we expect the improvements between subsequent guesses to diminish as it
approaches a solution. As will be demonstrated in the following examples, these different choices have
their advantages and disadvantages.
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EXAMPLE: Let error be measured by e = | f (x)| and tol be the acceptable level of error. The
function f (x) = x2 + tol/2 has no real roots. However, | f (0)| = tol/2 and is therefore acceptable
as a solution for a root finding program.

EXAMPLE: Let error be measured by e = |xi+1 − xi | and tol be the acceptable level of error.
The function f (x) = 1/x has no real roots, but the guesses xi = −tol/4 and xi+1 = tol/4 have an
error of e = tol/2 and is an acceptable solution for a computer program.

Based on these observations, the use of tolerance and converging criteria must be done very carefully
and in the context of the program that uses them.

16.3 Bisection Method
The Intermediate Value Theorem says that if f (x) is a continuous function between a and b, and
sign( f (a)) �= sign( f (b)), then there must be a c, such that a < c < b and f (c) = 0. This is illustrated
in Figure 16.1.

The bisection method uses the intermediate value theorem iteratively to find roots. Let f (x) be
a continuous function, and a and b be real scalar values such that a < b. Assume, without loss of
generality, that f (a) > 0 and f (b) < 0. Then by the intermediate value theorem, there must be a root
on the open interval (a, b). Now let m = b+a

2 , the midpoint between and a and b. If f (m) = 0 or is
close enough, then m is a root. If f (m) > 0, then m is an improvement on the left bound, a, and there
is guaranteed to be a root on the open interval (m, b). If f (m) < 0, then m is an improvement on the
right bound, b, and there is guaranteed to be a root on the open interval (a, m). This scenario is depicted
in Figure 16.2.

FIGURE 16.1

Illustration of intermediate value theorem. If sign(f (a)) �= sign(f (b)), then ∃c ∈ (a, b) such that f (c) = 0.
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FIGURE 16.2

Illustration of the bisection method. The sign of f (m) is checked to determine if the root is contained in the
interval (a, m) or (m, b). This new interval is used in the next iteration of the bisection method. In the case
depicted in the figure, the root is in the interval (m,b).

The process of updating a and b can be repeated until the error is acceptably low.

TRY IT! Program a function with header [R] = myBisection(f,a,b,tol) that approxi-
mates a root R of f, bounded by a and b to within | f ( a+b

2 )| < tol.
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TRY IT! The
√

2 can be computed as the root of the function f (x) = x2 − 2. Starting at a = 0
and b = 2, use myBisection to approximate the

√
2 to a tolerance of | f (x)| < 0.1 and

| f (x)| < 0.01. Verify that the results are close to a root by plugging the root back into the function.

16.4 Newton-Raphson Method
Let f (x) be a smooth and continuous function and xr be an unknown root of f (x). Now assume that
x0 is a guess for xr . Unless x0 is a very lucky guess, f (x0) will not be a root. Given this scenario, we
want to find an x1 that is an improvement on x0 (i.e., closer to xr than x0). If we assume that x0 is “close
enough” to xr , then we can improve upon it by taking the linear approximation of f (x) around x0, which
is a line, and finding the intersection of this line with the x-axis. Written out, the linear approximation
of f (x) around x0 is f (x) ≈ f (x0) + f ′(x0)(x − x0). Using this approximation, we find x1 such that
f (x1) = 0. Plugging these values into the linear approximation results in the equation

0 = f (x0) + f ′(x0)(x1 − x0),

which when solved for x1 is

x1 = x0 − f (x0)

f ′(x0)
.

An illustration of how this linear approximation improves an initial guess is shown in Figure 16.3.
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FIGURE 16.3

Illustration of Newton step for a smooth function, g (x).

Written generally, a Newton step computes an improved guess, xi , using a previous guess xi−1, and
is given by the equation

xi = xi−1 − g(xi−1)

g′(xi−1)
.

The Newton-Raphson Method of finding roots iterates Newton steps from x0 until the error is less
than the tolerance.

TRY IT! Again, the
√

2 is the root of the function f (x) = x2−2. Using x0 = 1.4 as a starting point,
use the previous equation to estimate

√
2. Compare this approximation with the value computed

by MATLAB’s sqrt function.

x = 1.4 − 1.42 − 2

2(1.4)
= 1.414285714285714

TRY IT! Write a function with header [R] = myNewton(f, df, x0, tol), where R is
an estimation of the root of f, f is a handle to the function f (x), df is a handle to the function
f ′(x), x0 is an initial guess, and tol is the error tolerance. The error measurement should be
| f (x)|.
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TRY IT! Use myNewton to compute
√

2 to within tolerance of 1e-6 starting at x0 = 1.5.

If x0 is close to xr , then it can be proven that, in general, the Newton-Raphson method converges to xr

much faster than the bisection method. However since xr is initially unknown, there is no way to know if
the initial guess is close enough to the root to get this behavior unless some special information about the
function is known a priori (e.g., the function has a root close to x = 0). In addition to this initialization
problem, the Newton-Raphson method has other serious limitations. For example, if the derivative at a
guess is close to 0, then the Newton step will be very large and probably lead far away from the root.
Also, depending on the behavior of the function derivative between x0 and xr , the Newton-Raphson
method may converge to a different root than xr that may not be useful for our engineering application.

TRY IT! Compute a single Newton step to get an improved approximation of the root of the
function f (x) = x3 + 3x2 − 2x − 5 and an initial guess, x0 = 0.29.

Note that f ′(x0) = −0.0077 (close to 0) and the error at x1 is approximately 324880000 (very
large).
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TRY IT! Consider the polynomial f (x) = x3 − 100x2 − x + 100. This polynomial has a root at
x = 1 and x = 100. Use the Newton-Raphson to find a root of f starting at x0 = 0.

At x0 = 0, f (x0) = 100, and f ′(x) = −1. A Newton step gives x1 = 0 − 100
−1 = 100, which is

a root of f . However, note that this root is much farther from the initial guess than the other root
at x = 1, and it may not be the root you wanted from an initial guess of 0.

Summary
1. Roots are an important property of functions.
2. The bisection method is a way of finding roots based on divide and conquer. Although stable, it

might converge slowly compared to the Newton-Raphson method.
3. The Newton-Raphson method is a different way of finding roots based on approximation of the

function. The Newton-Raphson method converges quickly close to the actual root, but can have
unstable behavior.

Vocabulary
analytic Intermediate Value Theorem tolerance
bisection method Newton-Raphson method zero
converge Newton step
error root

Functions and Operators
fzero roots

Problems
1. Write a function with header [R] = myNthRoot(x, N, tol), where x and tol are

strictly positive scalars, and N is an integer strictly greater than 1. The output argument, R,
should be an approximation R = N

√
x , the N -th root of x . This approximation should be

computed by using the Newton Raphson method to find the root of the function f (y) = yN − x .
The error metric should be | f (y)|.

2. Write a function with header [X] = myFixedPoint(f,g,tol,maxIter), where f and
g are function handles and tol and maxIter are strictly positive scalars. The input argument,
maxIter, is also an integer. The output argument, X, should be a scalar satisfying | f (X) −
g(X)| < tol; that is, X is a point that (almost) satisfies f(X) = g(X). To find X, you should
use the Bisection method with error metric, |F(m)| < tol. The function myFixedPoint
should “give up” after maxIter number of iterations and return X = [] if this occurs.
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3. Why does the bisection method fail for f (x) = 1/x with error given by |b − a|? Hint: How
does f (x) violate the intermediate value theorem?

4. Write a function with header [R, E] = myBisection(f, a, b, tol), where f is a
function handle, a and b are scalars such that a < b, and tol is a strictly positive scalar value.
The function should return an array, R, where R(i) is the estimation of the root of f defined by
(a+b)/2 for the i-th iteration of the bisection method. Remember to include the initial estimate.
The function should also return an array, E, where E(i) is the value of | f (R(i))| for the i-th
iteration of the bisection method. The function should terminate when E(i) < tol. You may
assume that sign( f (a)) �= sign( f (b)).
Clarification: The input a and b constitute the first iteration of bisection, and therefore R and E
should never be empty.

Test Cases:

5. Write a function with header [R, E] = myNewton(f, df, x0, tol) where f is a
function handle, df is a function handle to the derivative of f, x0 is an initial estimation of the
root, and tol is a strictly positive scalar. The function should return an array, R, where R(i)
is the Newton-Raphson estimation of the root of f for the i-th iteration. Remember to include
the initial estimate. The function should also return an array, E, where E(i) is the value of
| f (R(i))| for the i-th iteration of the Newton-Raphson method. The function should terminate
when E(i) < tol. You may assume that the derivative of f will not hit 0 during any iteration
for any of the test cases given.

Test Cases:
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Test Cases:

6. Consider the problem of building a pipeline from an offshore oil platform, a distance H miles
from the shoreline, to an oil refinery station on land, a distance Lmiles along the shore. The cost
of building the pipe is Cocean/mile while the pipe is under the ocean and Cland/mile while the pipe
is on land. The pipe will be built in a straight line toward the shore where it will make contact
at some point, x, between 0 and L. It will continue along the shore on land until it reaches the
oil refinery. See the figure for clarification.
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Write a function with header [x] = myPipeBuilder(C_ocean, C_land, L, H),
where the input arguments are as described earlier, and x is the x-value that minimizes the total
cost of the pipeline. You should use the bisection method to determine this value to within a
tolerance of 1 · 10−6 starting at an initial bound of a = 0 and b = L .

Test Cases:

7. Find a function f (x) and guess for the root of f , x0, such that the Newton-Raphson method
would oscillate between x0 and −x0 indefinitely.
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Motivation
Many engineering systems change over time, space, and many other dimensions of interest. In math-
ematics, function derivatives are often used to model these changes. However, in practice the func-
tion may not be explicitly known, or the function may be implicitly represented by a set of data
points. In these cases and others, it may be desirable to compute derivatives numerically rather than
analytically.

The focus of this chapter is numerical differentiation. By the end of this chapter you should be able
to derive some basic numerical differentiation schemes and their accuracy.

17.1 Numerical Differentiation Problem Statement
A numerical grid is an evenly spaced set of points over the domain of a function (i.e., the independent
variable), over some interval. The spacing or step size of a numerical grid is the distance between
adjacent points on the grid. For the purpose of this text, if x is a numerical grid, then x j is the j th point
in the numerical grid and h is the spacing between x j−1 and x j . Figure 17.1 shows an example of a
numerical grid.

There are several functions in MATLAB that can be used to generate numerical grids. For numerical
grids in one dimension, it is sufficient to use the colon operator or the linspace function, which you
have already used for creating regularly spaced arrays.

In MATLAB, a function f (x) can be represented over an interval by computing its value on a grid.
Although the function itself may be continuous, this discrete or discretized representation is useful
for numerical calculations and corresponds to data sets that may be acquired in engineering practice.
An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00017-8
© 2015 Elsevier Inc. All rights reserved.
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FIGURE 17.1

Numerical grid used to approximate functions.

Specifically, the function value may only be known at discrete points. For example, a temperature sensor
may deliver temperature versus time pairs at regular time intervals. Although temperature is a smooth
and continuous function of time, the sensor only provides values at discrete time intervals, and in this
particular case, the underlying function would not even be known.

Whether f is an analytic function or a discrete representation of one, we would like to derive methods
of approximating the derivative of f over a numerical grid and determine their accuracy.

17.2 Approximating Derivatives with Taylor Series
To derive an approximation for the derivative of f , we return to Taylor series. For an arbitrary function
f (x) the Taylor series of f around a = x j is

f (x) = f (x j )(x − x j )
0

0! + f ′(x j )(x − x j )
1

1! + f ′′(x j )(x − x j )
2

2! + f ′′′(x j )(x − x j )
3

3! + · · · .

If x is on a grid of points with spacing h, we can compute the Taylor series at x = x j+1 to get

f (x j+1) = f (x j )(x j+1 − x j )
0

0! + f ′(x j )(x j+1 − x j )
1

1! + f ′′(x j )(x j+1 − x j )
2

2! + f ′′′(x j )(x j+1 − x j )
3

3! +· · · .

Substituting h = x j+1 − x j and solving for f ′(x j ) gives the equation

f ′(x j ) = f (x j+1) − f (x j )

h
+

(
− f ′′(x j )h

2! − f ′′′(x j )h2

3! − · · ·
)

.

The terms that are in parentheses, − f ′′(x j )h
2! − f ′′′(x j )h2

3! − · · ·, are called higher order terms of h.
The higher order terms can be rewritten as

− f ′′(x j )h

2! − f ′′′(x j )h2

3! − · · · = h(α + ε(h)),

where α is some constant, and ε(h) is a function of h that goes to zero as h goes to 0. You can verify
with some algebra that this is true. We use the abbreviation “O(h)” for h(α + ε(h)), and in general, we
use the abbreviation “O(h p)” to denote h p(α + ε(h)).



17.2 Approximating Derivatives with Taylor Series 247

Substituting O(h) into the previous equations gives

f ′(x j ) = f (x j+1) − f (x j )

h
+ O(h).

This gives the forward difference formula for approximating derivatives as

f ′(x j ) ≈ f (x j+1) − f (x j )

h
,

and we say this formula is O(h).
Here, O(h) describes the accuracy of the forward difference formula for approximating derivatives.

For an approximation that is O(h p), we say that p is the order of the accuracy of the approximation.
With few exceptions, higher order accuracy is better than lower order. To illustrate this point, assume
q < p. Then as the spacing, h > 0, goes to 0, h p goes to 0 faster than hq . Therefore as h goes to 0, an
approximation of a value that is O(h p) gets closer to the true value faster than one that is O(hq).

By computing the Taylor series around a = x j at x = x j−1 and again solving for f ′(x j ), we get the
backward difference formula

f ′(x j ) ≈ f (x j ) − f (x j−1)

h
,

which is also O(h). You should try to verify this result on your own.
Intuitively, the forward and backward difference formulas for the derivative at x j are just the slopes

between the point at x j and the points x j+1 and x j−1, respectively.
We can construct an improved approximation of the derivative by clever manipulation of Taylor

series terms taken at different points. To illustrate, we can compute the Taylor series around a = x j at
both x j+1 and x j−1. Written out, these equations are

f (x j+1) = f (x j ) + f ′(x j )h + 1

2
f ′′(x j )h

2 + 1

6
f ′′′(x j )h

3 + · · ·

and

f (x j−1) = f (x j ) − f ′(x j )h + 1

2
f ′′(x j )h

2 − 1

6
f ′′′(x j )h

3 + · · · .

Subtracting the formulas above gives

f (x j+1) − f (x j−1) = 2 f ′(x j ) + 2

3
f ′′′(x j )h

3 + · · · ,

which when solved for f ′(x j ) gives the central difference formula

f ′(x j ) ≈ f (x j+1) − f (x j−1)

2h
.

Because of how we subtracted the two equations, the h terms canceled out; therefore, the central
difference formula is O(h2), even though it requires the same amount of computational effort as the
forward and backward difference formulas! Thus the central difference formula gets an extra order
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FIGURE 17.2

Illustration of the forward difference (line joining (xj , fj ) and (xj+1, fj+1)), the backward difference (line
joining (xj , fj ), (xj−1, fj−1)), and the central difference (line joining (xj−1, fj−1) and (xj+1, fj+1)). Note the
difference in slopes depending on the method used.

of accuracy for free. In general, formulas that utilize symmetric points around x j , for example x j−1
and x j+1, have better accuracy than asymmetric ones, such as the forward and background difference
formulas.

Figure 17.2 shows the forward, backward, and central difference approximation of the derivative of
a function f . As can be seen, the difference in the value of the slope can be significantly different based
on the size of the step h and the nature of the function.

TRY IT! Take the Taylor series of f around a = x j and compute the series at x =
x j−2, x j−1, x j+1, x j+2. Show that the resulting equations can be combined to form an approx-
imation for f ′(x j ) that is O(h4).

First, compute the Taylor series at the specified points.

f (x j−2) = f (x j ) − 2h f ′(x j ) + 4h2 f ′′(x j )

2
− 8h3 f ′′′(x j )

6
+ 16h4 f ′′′′(x j )

24
− 32h5 f ′′′′′(x j )

120
+ · · ·

f (x j−1) = f (x j ) − h f ′(x j ) + h2 f ′′(x j )

2
− h3 f ′′′(x j )

6
+ h4 f ′′′′(x j )

24
− h5 f ′′′′′(x j )

120
+ · · ·

f (x j+1) = f (x j ) + h f ′(x j ) + h2 f ′′(x j )

2
+ h3 f ′′′(x j )

6
+ h4 f ′′′′(x j )

24
+ h5 f ′′′′′(x j )

120
+ · · ·

f (x j+2) = f (x j ) + 2h f ′(x j ) + 4h2 f ′′(x j )

2
+ 8h3 f ′′′(x j )

6
+ 16h4 f ′′′′(x j )

24
+ 32h5 f ′′′′′(x j )

120
+ · · ·

To get the h2, h3, and h4 terms to cancel out, we can compute

f (x j−2) − 8 f (x j−1) + 8 f (x j−1) − f (x j+2) = 12h f ′(x j ) − 48h5 f ′′′′′(x j )

120
,
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which can be rearranged to

f ′(x j ) = f (x j−2) − 8 f (x j−1) + 8 f (x j−1) − f (x j+2)

12h
+ O(h4).

This formula is a better approximation for the derivative at x j than the central difference formula,
but requires twice as many calculations.

TIP! MATLAB has a command that can be used to compute finite differences directly: for a vector
f, the command d=diff(f) produces an array d in which the entries are the differences of the
adjacent elements in the initial array f. In other words d(i) = f(i+1) - f(i).

WARNING! When using the command diff, the size of the output is one less than the size of
the input since it needs two arguments to produce a difference.

EXAMPLE: Consider the function f (x) = cos (x). We know the derivative of cos (x) is − sin (x).
Although in practice we may not know the underlying function we are finding the derivative for,
we use the simple example to illustrate the aforementioned numerical differentiation methods and
their accuracy. The following code computes the derivatives numerically.

This code produces the following output.
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FIGURE 17.3

Comparison of the numerical evaluation of the explicit formula for the derivative of cos and of the
derivative of cos obtained by the forward difference formula.

As Figure 17.3 shows, there is a small offset between the two curves, which results from the
numerical error in the evaluation of the numerical derivatives. The maximal error between the two
numerical results is of the order 0.05 and expected to decrease with the size of the step.

As illustrated in the previous example, the finite difference scheme contains a numerical error due
to the approximation of the derivative. This difference decreases with the size of the discretization step,
which is illustrated in the following example.

EXAMPLE: The following code computes the numerical derivative of f (x) = cos (x) using the
forward difference formula for decreasing step sizes, h. It then plots the maximum error between
the approximated derivative and the true derivative versus h (Figure 17.4).
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FIGURE 17.4

Maximum error between the numerical evaluation of the explicit formula for the derivative of cos and
the derivative of cos obtained by forward finite differencing.

The slope of the line in log-log space is 1; therefore, the error is proportional to h1, which means
that, as expected, the forward difference formula is O(h).

17.3 Approximations of Higher Order Derivatives
It also possible to use Taylor series to approximate higher order derivatives (e.g., f ′′(x j ), f ′′′(x j ), etc.).
For example, taking the Taylor series around a = x j and then computing it at x = x j−1 and x j+1 gives
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f (x j−1) = f (x j ) − h f ′(x j ) + h2 f ′′(x j )

2
− h3 f ′′′(x j )

6
+ · · ·

and

f (x j+1) = f (x j ) + h f ′(x j ) + h2 f ′′(x j )

2
+ h3 f ′′′(x j )

6
+ · · · .

If we add these two equations together, we get

f (x j−1) + f (x j+1) = 2 f (x j ) + h2 f ′′(x j ) + h4 f ′′′′(x j )

24
+ · · · ,

and with some rearrangement gives the approximation

f ′′(x j ) ≈ f (x j+1) − 2 f (x j ) + f (x j−1)

h2 ,

and is O(h2).

17.4 Numerical Differentiation with Noise
As stated earlier, sometimes f is given as a vector where f is the corresponding function value for
independent data values in another vector x , which is gridded. Sometimes data can be contaminated
with noise, meaning its value is off by a small amount from what it would be if it were computed from
a pure mathematical function. This can often occur in engineering due to inaccuracies in measurement
devices or the data itself can be slightly modified by perturbations outside the system of interest. For
example, you may be trying to listen to your friend talk in a crowded room. The signal f might be the
intensity and tonal values in your friend’s speech. However, because the room is crowded, noise from
other conversations are heard along with your friend’s speech, and he becomes difficult to understand.

To illustrate this point, we numerically compute the derivative of a simple cosine wave corrupted by
a small sin wave. Consider the following two functions:

f (x) = cos (x)

and
fε,ω(x) = cos (x) + ε sin (ωx)

where 0 < ε � 1 is a very small number and ω is a large number. When ε is small, it is clear that
f � fε,ω. To illustrate this point, we plot fε,ω(x) for ε = 0.01 and ω = 100, and we can see it is very
close to f (x), as shown in Figure 17.5.

The derivatives of our two test functions are

f ′(x) = − sin (x)

and
f ′
ε,ω(x) = − sin (x) + εω cos (ωx).

Since εω may not be small when ω is large, the contribution of the noise to the derivative may not be
small. As a result, the derivative (analytic and numerical) may not be usable. For instance, Figure 17.6
shows f ′(x) and f ′

ε,ω(x) for ε = 0.01 and ω = 100.
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FIGURE 17.5

Cosine wave contaminated with a small amount of noise. The noise is hardly visible, but it will be shown
that it has drastic consequences for the derivative.

FIGURE 17.6

Although the noise is hardly visible on the function itself, the noise makes the derivative completely unusable.
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Summary
1. Because explicit derivation of functions is sometimes cumbersome for engineering applications,

numerical approaches can be preferable.
2. Numerical approximation of derivatives can be done using a grid on which the derivative is approx-

imated by finite differences.
3. Finite differences approximate the derivative by ratios of differences in the function value over small

intervals.
4. Finite difference schemes have different approximation orders depending on the method used.
5. There are issues with finite differences for approximation of derivatives when the data is noisy.

Vocabulary
accuracy discretize numerical grid
backward difference forward difference order
central difference higher order terms spacing
discrete noise step size

Functions and Operators
diff

Problems
1. Write a function with header [df, X] = myDerCalc(f, a, b, N, option), where

f is a function handle, a and b are scalars such that a < b, N is an integer bigger than 10, and
option is the string 'forward', 'backward', or 'central'. Let x be an array starting
at a, ending at b, containing N evenly spaced elements, and let y be the array f(x). The output
argument,df, should be the numerical derivatives computed forx andy according to the method
defined by the input argument, option. The output argument X should be an array the same
size as df containing the points in x for which df is valid. Specifically, the forward difference
method “loses” the last point, the backward difference method loses the first point, and the central
difference method loses the first and last points.

2. Write a function with header [dy, X] = myNumDiff(f, a, b, n, option), where
f is a handle to a function. The function myNumDiff should compute the derivative of f
numerical for n evenly spaced points starting at a and ending at b according to the method
defined by option. The input argument option is one of the following strings: ‘forward’,
‘backward’, ‘central’. Note that for the forward and backward method, the output argument,
dy, should be 1 × (n − 1), and for the central difference method dy should be 1 × (n − 2).
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The function should also output a row vector X that is the same size as dy and denotes the
x-values for which dy is valid.

Test Cases:



256 CHAPTER 17 Numerical Differentiation

3. Write a function with header [dy, X] = myNumDiffwSmoothing(x, y, n), where x
andy are row vectors of the same length, andn is a strictly positive scalar. The function should first
create a vector of “smoothed” y data points where ySmooth(i) = mean(y(i-n:i+n)).
The function should then compute dy, the derivative of the smoothed y-vector using the central
difference method. The function should also output a row vector X that is the same size as dy
and denotes the x-values for which dy is valid.

Assume that the data contained in x is in ascending order with no duplicate entries. However, it
is possible that the elements of x will not be evenly spaced. Note that the output dy will have
2n + 2 fewer points than y. Assume that the length of y is much bigger than 2n + 2.

Test Cases:
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4. Use Taylor series to show the following approximations and their accuracy.

f ′′(x j ) = − f (x j+3) + 4 f (x j+2) − 5 f (x j+1) + 2 f (x j )

h2 + O(h2),

f ′′′(x j ) = f (x j+3) − 3 f (x j+2) + 3 f (x j+1) − f (x j )

h3 + O(h).
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Motivation
The integral of a function is normally described as the “area under the curve.” In engineering, the
integral has many applications for modeling, predicting, and understanding physical systems. However
in practice, finding an exact solution for the integral of a function is difficult or impossible.

This chapter describes several methods of numerically integrating functions. By the end of this
chapter, you should understand these methods, how they are derived, their geometric interpretation, and
their accuracy.

18.1 Numerical Integration Problem Statement
Given a function f (x), we want to approximate the integral of f (x) over the total interval, [a, b]. Figure
18.1 illustrates this area. To accomplish this goal, we assume that the interval has been discretized into
a numeral grid, x , consisting of n + 1 points with spacing, h = b−a

n . Here, we denote each point in x
by xi , where x0 = a and xn = b. Note: There are n + 1 grid points because the count starts at x0. We
also assume we have a function, f (x), that can be computed for any of the grid points, or that we have
been given the function implicitly as f (xi ). The interval [xi , xi+1] is referred to as a subinterval.

The following sections give some of the most common methods of approximating
∫ b

a f (x)dx . Each
method approximates the area under f (x) for each subinterval by a shape for which it is easy to compute
the exact area, and then sums the area contributions of every subinterval.
An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00018-X
© 2015 Elsevier Inc. All rights reserved.
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FIGURE 18.1

Illustration of the integral. The integral from a to b of the function f is the area below the curve (shaded in
grey).

18.2 Riemann’s Integral
The simplest method for approximating integrals is by summing the area of rectangles that are defined
for each subinterval. The width of the rectangle is xi+1 − xi = h, and the height is defined by a function
value f (x) for some x in the subinterval. An obvious choice for the height is the function value at the
left endpoint, xi , or the right endpoint, xi+1, because these values can be used even if the function itself
is not known. This method gives the Riemann Integral approximation, which is

∫ b

a
f (x)dx ≈

n−1∑
i=0

h f (xi ),

or ∫ b

a
f (x)dx ≈

n∑
i=1

h f (xi ),

depending on whether the left or right endpoint is chosen.
As with numerical differentiation, we want to characterize how the accuracy improves as h gets small.

To determine this characterizing, we first rewrite the integral of f (x) over an arbitrary subinterval in
terms of the Taylor series. The Taylor series of f (x) around a = xi is

f (x) = f (xi ) + f ′(xi )(x − xi ) + · · ·
Thus ∫ xi+1

xi

f (x)dx =
∫ xi+1

xi

( f (xi ) + f ′(xi )(x − xi ) + · · · ) dx
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by substitution of the Taylor series for the function. Since the integral distributes, we can rearrange the
right side into the following form:∫ xi+1

xi

f (xi )dx +
∫ xi+1

xi

f ′(xi )(x − xi )dx + · · · .

Solving each integral separately results in the approximation

∫ xi+1

xi

f (x)dx = h f (xi ) + h2

2
f ′(xi ) + O(h3),

which is just ∫ xi+1

xi

f (x)dx = h f (xi ) + O(h2).

Since the h f (xi ) term is our Riemann integral approximation for a single subinterval, the Riemann
integral approximation over a single interval is O(h2).

If we sum the O(h2) error over the entire Riemann sum, we get nO(h2). The relationship between
n and h is

h = b − a

n
,

and so our total error becomes b−a
h O(h2) = O(h) over the whole interval. Thus the overall accuracy

is O(h).
The Midpoint Rule takes the rectangle height of the rectangle at each subinterval to be the function

value at the midpoint between xi and xi+1, which for compactness we denote by yi = xi+1+xi
2 . The

Midpoint Rule says ∫ b

a
f (x)dx ≈

n−1∑
i=0

h f (yi ).

Similarly to the Riemann integral, we take the Taylor series of f (x) around yi , which is

f (x) = f (yi ) + f ′(yi )(x − yi ) + f ′′(yi )(x − yi )
2

2! + · · ·

Then the integral over a subinterval is

∫ xi+1

xi

f (x)dx =
∫ xi+1

xi

(
f (yi ) + f ′(yi )(x − yi ) + f ′′(yi )(x − yi )

2

2! + · · ·
)

dx,

which distributes to∫ xi+1

xi

f (x)dx =
∫ xi+1

xi

f (yi )dx +
∫ xi+1

xi

f ′(yi )(x − yi )dx +
∫ xi+1

xi

f ′′(yi )(x − yi )
2

2! dx + · · · .
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Recognizing that since xi and xi+1 are symmetric around yi , then
∫ xi+1

xi
f ′(yi )(x − yi )dx = 0. This

is true for the integral of (x − yi )
p for any odd p. For the integral of (x − yi )

p and with p even, it

suffices to say that
∫ xi+1

xi
(x − yi )

pdx = ∫ h
2

− h
2

x pdx , which will result in some multiple of h p+1 with no

lower order powers of h.
Utilizing these facts reduces the expression for the integral of f (x) to

∫ xi+1

xi

f (x)dx = h f (yi ) + O(h3).

Since h f (yi ) is the approximation of the integral over the subinterval, the Midpoint Rule is O(h3)

for one subinterval, and using similar arguments as for the Riemann Integral, is O(h2) over the whole
interval. Since the Midpoint Rule requires the same number of calculations as the Riemann Integral,
we essentially get an extra order of accuracy for free! However, if f (xi ) is given in the form of data
points, then we will not be able to compute f (yi ) for this integration scheme.

TRY IT! Use the left Riemann Integral, right Riemann Integral, and Midpoint Rule to approximate∫ π

0 sin (x)dx with 11 evenly spaced grid points over the whole interval. Compare this value to the
exact value of 2.

The previous code produces the following output.
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18.3 Trapezoid Rule
The Trapezoid Rule fits a trapezoid into each subinterval and sums the areas of the trapezoid to
approximate the total integral. This approximation for the integral to an arbitrary function is shown in
Figure 18.2. For each subinterval, the Trapezoid Rule computes the area of a trapezoid with corners at
(xi , 0), (xi+1, 0), (xi , f (xi )), and (xi+1, f (xi+1)), which is h f (xi )+ f (xi+1)

2 . Thus, the Trapezoid Rule
approximates integrals according to the expression

∫ b

a
f (x)dx ≈

n−1∑
i=0

h
f (xi ) + f (xi+1)

2
.

FIGURE 18.2

Illustration of the trapezoid integral procedure. The area below the curve is approximated by a summation
of trapezoids that approximate the function.
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TIP! You may notice that the Trapezoid Rule “double-counts” most of the terms in the series. To
illustrate this fact, consider the expansion of the Trapezoid Rule:

n−1∑
i=0

h
f (xi ) + f (xi+1)

2
= h

2

[
( f (x0) + f (x1)) + ( f (x1) + f (x2)) + ( f (x2)

+ f (x3)) + · · · + ( f (xn−1) + f (xn))
]
.

Computationally, this is many extra additions and calls to f (x) than is really necessary. We can be
more computationally efficient using the following expression.

∫ b

a
f (x)dx ≈ h

2

(
f (x0) + 2

(
n−1∑
i=1

f (xi )

)
+ f (xn)

)
.

To determine the accuracy of the Trapezoid Rule approximation, we first take Taylor series expansion
of f (x) around yi = xi+1+xi

2 , which is the midpoint between xi and xi+1. This Taylor series expansion
is

f (x) = f (yi ) + f ′(yi )(x − yi ) + f ′′(yi )(x − yi )
2

2! + · · ·
Computing the Taylor series at xi and xi+1 and noting that xi − yi = − h

2 and xi+1 − yi = h
2 , results

in the following expressions:

f (xi ) = f (yi ) − h f ′(yi )

2
+ h2 f ′′(yi )

8
− · · ·

and

f (xi+1) = f (yi ) + h f ′(yi )

2
+ h2 f ′′(yi )

8
+ · · · .

Taking the average of these two expressions results in the new expression,

f (xi+1) + f (xi )

2
= f (yi ) + O(h2).

Solving this expression for f (yi ) yields

f (yi ) = f (xi+1) + f (xi )

2
+ O(h2).

Now returning to the Taylor expansion for f (x), the integral of f (x) over a subinterval is

∫ xi+1

xi

f (x)dx =
∫ xi+1

xi

(
f (yi ) + f ′(yi )(x − yi ) + f ′′(yi )(x − yi )

2

2! + · · ·
)

dx .
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Distributing the integral results in the expression∫ xi+1

xi

f (x)dx =
∫ xi+1

xi

f (yi )dx +
∫ xi+1

xi

f ′(yi )(x − yi )dx +
∫ xi+1

xi

f ′′(yi )(x − yi )
2

2! dx + · · ·

Now since xi and xi+1 are symmetric around yi , the integrals of the odd powers of (x −yi )
p disappear

and the even powers resolve to a multiple h p+1.∫ xi+1

xi

f (x)dx = h f (yi ) + O(h3).

Now if we substitute f (yi ) with the expression derived explicitly in terms of f (xi ) and f (xi+1), we
get ∫ xi+1

xi

f (x)dx = h

(
f (xi+1) + f (xi )

2
+ O(h2)

)
+ O(h3),

which is equivalent to

h

(
f (xi+1) + f (xi )

2

)
+ hO(h2) + O(h3)

and therefore, ∫ xi+1

xi

f (x)dx = h

(
f (xi+1) + f (xi )

2

)
+ O(h3).

Since h
2 ( f (xi+1)+ f (xi )) is the Trapezoid Rule approximation for the integral over the subinterval,

it is O(h3) for a single subinterval and O(h2) over the whole interval.

TRY IT! Use the Trapezoid Rule to approximate
∫ π

0 sin (x)dx with 11 evenly spaced grid points
over the whole interval. Compare this value to the exact value of 2.

The previous code produces the following output.
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18.4 Simpson’s Rule
Consider two consecutive subintervals, [xi−1, xi ] and [xi , xi+1]. Simpson’s Rule approximates the
area under f (x) over these two subintervals by fitting a quadratic polynomial through the points
(xi−1, f (xi−1)), (xi , f (xi )), and (xi+1, f (xi+1)), which is a unique polynomial, and then integrating
the quadratic exactly. Figure 18.3 shows this integral approximation for an arbitrary function.

First, we construct the quadratic polynomial approximation of the function over the two subintervals.
The easiest way to do this is to use Lagrange polynomials, which was discussed in Chapter 14. By
applying the formula for constructing Lagrange polynomials we get the polynomial

Pi (x) = f (xi−1)
(x − xi )(x − xi+1)

(xi−1 − xi )(xi−1 − xi+1)
+ f (xi )

(x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)

+ f (xi+1)
(x − xi−1)(x − xi )

(xi+1 − xi−1)(xi+1 − xi )
,

and with substitutions for h results in

Pi (x) = f (xi−1)

2h2 (x − xi )(x − xi+1) − f (xi )

h2 (x − xi−1)(x − xi+1) + f (xi+1)

2h2 (x − xi−1)(x − xi ).

You can confirm that the polynomial intersects the desired points. With some algebra and manipu-
lation, the integral of Pi (x) over the two subintervals is∫ xi+1

xi−1

Pi (x)dx = h

3
( f (xi−1) + 4 f (xi ) + f (xi+1).

FIGURE 18.3

Illustration of the Simpson integral formula. Discretization points are grouped by three, and a parabola is fit
between the three points. This can be done by a typical interpolation polynomial. The area under the curve
is approximated by the area under the parabola.
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FIGURE 18.4

Illustration of the accounting procedure to approximate the function f by the Simpson rule for the entire
interval [a, b].

To approximate the integral over (a, b), we must sum the integrals of Pi (x)over every two subintervals
since Pi (x) spans two subintervals. Substituting h

3 ( f (xi−1) + 4 f (xi ) + f (xi+1)) for the integral of
Pi (x) and regrouping the terms for efficiency leads to the formula

∫ b

a
f (x)dx ≈ h

3

⎡
⎣ f (x0) + 4

⎛
⎝ n−1∑

i=1,i odd

f (xi )

⎞
⎠+ 2

⎛
⎝ n−2∑

i=2,i even

f (xi )

⎞
⎠+ f (xn)

⎤
⎦ .

This regrouping is illustrated in Figure 18.4.

WARNING! Note that to use Simpson’s Rule, you must have an even number of intervals and,
therefore, an odd number of grid points.

To compute the accuracy of the Simpson’s Rule, we take the Taylor series approximation of f (x)

around xi , which is

f (x) = f (xi ) + f ′(xi )(x − xi ) + f ′′(xi )(x − xi )
2

2! + f ′′′(xi )(x − xi )
3

3! + f ′′′′(xi )(x − xi )
4

4! + · · ·

Computing the Taylor series at xi−1 and xi+1 and substituting for h where appropriate gives the
expressions

f (xi−1) = f (xi ) − h f ′(xi ) + h2 f ′′(xi )

2! − h3 f ′′′(xi )

3! + h4 f ′′′′(xi )

4! − · · ·
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and

f (xi+1) = f (xi ) + h f ′(xi ) + h2 f ′′(xi )

2! + h3 f ′′′(xi )

3! + h4 f ′′′′(xi )

4! + · · ·
Now consider the expression f (xi−1)+4 f (xi )+ f (xi+1)

6 . Substituting the Taylor series for the respective
numerator values produces the equation

f (xi−1) + 4 f (xi ) + f (xi+1)

6
= f (xi ) + h2

6
f ′′(xi ) + h4

72
f ′′′′(xi ) + · · ·

Note that the odd terms cancel out. This implies

f (xi ) = f (xi−1) + 4 f (xi ) + f (xi+1)

6
− h2

6
f ′′(xi ) + O(h4).

By substitution of the Taylor series for f (x), the integral of f (x) over two subintervals is then

∫ xi+1

xi−1

f (x)dx =
∫ xi+1

xi−1

(
f (xi ) + f ′(xi )(x − xi ) + f ′′(xi )(x − xi )

2

2!

+ f ′′′(xi )(x − xi )
3

3! + f ′′′′(xi )(x − xi )
4

4! + · · ·
)

dx .

Again, we distribute the integral and without showing it, we drop the integrals of terms with odd
powers because they are zero.

∫ xi+1

xi−1

f (x)dx =
∫ xi+1

xi−1

f (xi )dx +
∫ xi+1

xi−1

f ′′(xi )(x − xi )
2

2! dx +
∫ xi+1

xi−1

f ′′′′(xi )(x − xi )
4

4! dx + · · · .

We then carry out the integrations. As will soon be clear, it benefits us to compute the integral of the
second term exactly. The resulting equation is

∫ xi+1

xi−1

f (x)dx = 2h f (xi ) + h3

3
f ′′(xi ) + O(h5).

Substituting the expression for f (xi ) derived earlier, the right-hand side becomes

2h

(
f (xi−1) + 4 f (xi ) + f (xi+1)

6
− h2

6
f ′′(xi ) + O(h4)

)
+ h3

3
f ′′(xi ) + O(h5),

which can be rearranged to[
h

3
( f (xi−1) + 4 f (xi ) + f (xi+1)) − h3

3
f ′′(xi ) + O(h5)

]
+ h3

3
f ′′(xi ) + O(h5).
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Canceling and combining the appropriate terms results in the integral expression

∫ xi+1

xi−1

f (x)dx = h

3
( f (xi−1) + 4 f (xi ) + f (xi+1)) + O(h5).

Recognizing that h
3 ( f (xi−1) + 4 f (xi ) + f (xi+1)) is exactly the Simpson’s Rule approximation for

the integral over this subinterval, this equation implies that Simpson’s Rule is O(h5) over a subinterval
and O(h4) over the whole interval. Because the h3 terms cancel out exactly, Simpson’s Rule gains
another two orders of accuracy!

TRY IT! Use Simpson’s Rule to approximate
∫ π

0 sin (x)dx with 11 evenly spaced grid points over
the whole interval. Compare this value to the exact value of 2.

Note the change in indices from the formula given in the text. This change was made to accommodate
the fact that x0 in the formula isx(1) in the code. The previous code produces the following output.

18.5 Computing Integrals in MATLAB®

MATLAB has several built-in functions for computing integrals. The trapz takes as input arguments
a numerical grid x and an array of function values, f, computed on x.
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TRY IT! Use the trapz function to approximate
∫ π

0 sin (x)dx for 11 equally spaced points over
the whole interval. Compare this value to the one computed in the early example using the Trapezoid
Rule.

The previous code produces the following output.

Sometimes we want to know the approximated cumulative integral. That is, we want to know F(X) =∫ X
x0

f (x)dx . For this purpose, it is useful to use the cumtrapz function cumsum, which takes the same
input arguments as trapz.

TRY IT! Use the cumtrapz function to approximate the cumulative integral of f (x) = sin (x)

from 0 to π with a discretization step of 0.01. The exact solution of this integral is F(x) = sin(x).
Plot the results to compare (Figure 18.5).
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FIGURE 18.5

Illustration of a primitive of the function sin computed numerically in the interval [0, π ] using the
cumtrapz function. The result is clearly − cos with an offset.

The quad(f,a,b) function uses a different numerical differentiation scheme to approximate
integrals. quad integrates the function defined by the function handle, f , from a to b.

TRY IT! Use the quad function to compute
∫ π

0 sin (x)dx . Compare your answer with the correct
answer of 2.
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Summary
1. Explicit integration of functions is often impossible or inconvenient, and numerical approaches must

be used instead.
2. The Riemann Integral, Trapezoid Rule, and Simpson’s Rule are common methods of approximating

integrals.
3. Each method has an order of accuracy that depends on the approximation of the area below the

function.

Vocabulary
Midpoint Rule Simpson’s Rule
Riemann Integral Trapezoidal Rule

Functions and Operators
cumsum quad quadv
cumtrapz quad2d sum
dblquad quadgk trapz
polyint quadl triplequad

Problems
1. Write a function with header [I] = myIntCalc(f, f0, a, b, N, option),

where f is a function handle, a and b are scalars such that a < b, N is a positive integer,
and option is the string 'rect', 'trap', or 'simp'. Let x be an array starting at a, ending
at b, and containing N evenly spaced elements, and let y be the array f (x). The output argu-
ment, I, should be an approximation to the integral of f (x), with initial condition f0, computed
according to the input argument, option.

2. Write a function with header [I] = myPolyInt(x, y), where x and y are one-
dimensional arrays of the same size, and the elements of x are unique and in ascending order.
The function myPolyInt should (1) compute the Lagrange polynomial going through all the
points defined by x and y and (2) return an approximation to the area under the curve defined
by x and y, I, defined as the analytic integral of the Lagrange interpolating polynomial.

3. When will myPolyInt work worse than the trapezoid method?
4. Write a function with header [I] = myNumInt(f, a, b, n, option), where I is the

numerical integral of f, a function handle, computed on a grid of n evenly spaced points starting
at a and ending at b. The integration method used should be one of the following strings defined
by option: 'rect', 'trap', 'simp'. For the rectangle method, the function value should
be taken from the right endpoint of the interval. You may assume that n is odd and that f is
vectorized.
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Warning: In the reader, the x subscripts start at x0 not x1; take note of this when programming your
loops. The odd-even indices will be reversed. Also the n term given in Simpsons Rule denotes
the number of subintervals, not the number of points as specified by the input argument, n.

Test Cases:

5. A previous chapter demonstrated that some functions can be expressed as an infinite sum of
polynomials (i.e. Taylor serie). Other functions, particularly periodic functions, can be written
as an infinite sum of sine and cosine waves. For these functions,

f (x) = A0

2
+

∞∑
n=1

An cos (nx) + Bn sin (nx)

It can be shown that the values of An and Bn can be computed using the following formulas:

An = 1

π

∫ π

−π

f (x) cos (nx) dx

Bn = 1

π

∫ π

−π

f (x) sin (nx) dx

Just like Taylor series, functions can be approximated by truncating the Fourier series at some
n = N . Fourier series can be used to approximate some particularly nasty functions such as
the step function, and they form the basis of many engineering applications such as signal
processing.
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Write a function with header[An, Bn] = myFourierCoeff(f, n), wheref is a handle
to a vectorized function that is 2π -periodic. The function myFourierCoeff should compute
the n-th Fourier coefficients, An and Bn , in the Fourier series for f defined by the two formulas
given earlier. You should use the quad function to perform the integration.

Test Cases: Run this script for the following functions, f, and orders, N (i.e., you should replace
the lines “f = · · ·” with the given function and “N = · · ·” with order specified in the title of the
plots).
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6. For a numerical grid with spacing h, Boole’s Rule for approximating integrals says that∫ xi+4

xi

f (x)dx ≈ 3h

90

[
7 f (xi ) + 32 f (xi+1) + 12 f (xi+2) + 32 f (xi+3) + 7 f (xi+4)

]
.

Show that Boole’s Rule is O(h7) over a single subinterval.
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Motivation
Differential equations are relationships between a function and its derivatives, and they are used to model
systems in every engineering field. For example, a simple differential equation relates the acceleration
of a car with its position. Unlike differentiation where analytic solutions can usually be computed, in
general finding exact solutions to differential equations is very hard. Therefore, numerical solutions are
critical to making these equations useful for designing and understanding engineering systems.

Because differential equations are so common in engineering, physics, and mathematics, the study of
them is a vast and rich field that cannot be covered in this introductory text. This chapter covers ordinary
differential equations with specified initial values, a subclass of differential equation problems called
initial value problems. To reflect the importance of this class of problem, MATLAB has a whole suite of
built-in functions to solve this kind of problem. By the end of this chapter, you should understand what
ordinary differential equation initial value problems are, how to pose these problems to MATLAB, and
how these MATLAB solvers work.

19.1 ODE Initial Value Problem Statement
A differential equation is a relationship between a function, f (x), its independent variable, x , and any
number of its derivatives. An ordinary differential equation or ODE is a differential equation where
the independent variable, and therefore also the derivatives, is in one dimension. For the purpose of this

An Introduction to MATLAB® Programming and Numerical Methods. http://dx.doi.org/10.1016/B978-0-12-420228-3.00019-1
© 2015 Elsevier Inc. All rights reserved.
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FIGURE 19.1

Pendulum system.

book, we assume that an ODE can be written

F

(
x, f (x),

d f (x)

dx
,

d2 f (x)

dx2 ,
d3 f (x)

dx3 , . . . ,
dn−1 f (x)

dxn−1

)
= dn f (x)

dxn
,

where F is an arbitrary function that incorporates one or all of the input arguments, and n is the order
of the differential equation. This equation is referred to as an nth order ODE.

To give an example of an ODE, consider a pendulum of length l with a mass, m, at its end; see
Figure 19.1. The angle the pendulum makes with the vertical axis over time, Θ(t), in the presence of
vertical gravity, g, can be described by the pendulum equation, which is the ODE

ml
d2Θ(t)

dt2 = −mg sin (Θ(t)).

This equation can be derived by summing the forces in the x and y direction, and then changing to polar
coordinates.

In contrast, a partial differential equation or PDE is a general form differential equation where x
is a vector containing the independent variables x1, x2, x3, . . . , xm , and the partial derivatives can be of
any order and with respect to any combination of variables. An example of a PDE is the heat equation,
which describes the evolution of temperature in space over time:

∂u(t, x, y, z)

∂t
= α

(
∂u(t, x, y, z)

∂x
+ ∂u(t, x, y, z)

∂ y
+ ∂u(t, x, y, z)

∂z

)
.

Here, u(t, x, y, z) is the temperature at (x, y, z) at time t , and α is a thermal diffusion constant.
A general solution to a differential equation is a g(x) that satisfies the differential equation. Although

there are usually many solutions to a differential equation, they are still hard to find. For an ODE of order
n, a particular solution is a p(x) that satisfies the differential equation and n explicitly known values
of the solution, or its derivatives, at certain points. Generally stated, p(x) must satisfy the differential
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equation and p( j)(xi ) = pi , where p( j) is the j th derivative of p, for n triplets, ( j, xi , pi ). For the
purpose of this text, we refer to the particular solution simply as the solution.

TRY IT! Returning to the pendulum example, if we assume the angles are very small (i.e.,
sin (Θ(t)) ≈ Θ(t)), then the pendulum equation reduces to

l
d2Θ(t)

dt2 = −gΘ(t).

Verify that Θ(t) = cos
(√

g
l t

)
is a general solution to the pendulum equation. If the angle and

angular velocities at t = 0 are the known values, Θ0 and 0, respectively, verify that Θ(t) =
Θ0 cos

(√
g
l t

)
is a particular solution for these known values.

For the general solution, the derivatives of Θ(t) are

dΘ(t)

dt
= −

√
g

l
sin

(√
g

l
t

)

and
d2Θ(t)

dt2 = −g

l
cos

(√
g

l
t

)
.

By plugging the second derivative back into the differential equation on the left side, it is easy to
verify that Θ(t) satisfies the equation and so is a general solution.

For the particular solution, the Θ0 coefficient will carry through the derivatives, and it can be

verified that the equation is satisfied. Θ(0) = Θ0 cos (0) = Θ0, and 0 = −Θ0

√
g
l sin (0) = 0,

therefore the particular solution also satisfies the known values.
A pendulum swinging at small angles is a very uninteresting pendulum indeed. Unfortunately,

there is no explicit solution for the pendulum equation with large angles that is as simple alge-
braically. Since this system is much simpler than most practical engineering systems and has no
obvious solution, the need for numerical solutions to ODEs is clear.

A common set of known values for an ODE solution is the initial value. For an ODE of order n, the
initial value is a known value for the 0th to n − 1th derivatives at x = 0, f (0), f (1)(0), f (2)(0), . . . ,

f (n−1)(0). For a certain class of ordinary differential equations, the initial value is sufficient to find a
unique particular solution. Finding a solution to an ODE given an initial value is called the initial value
problem. Although the name suggests we will only cover ODEs that evolve in time, initial value prob-
lems can also include systems that evolve in other dimensions such as space. Intuitively, the pendulum
equation can be solved as an initial value problem because under only the force of gravity, an initial
position and velocity should be sufficient to describe the motion of the pendulum for all time afterward.

The remainder of this chapter covers several methods of numerically approximating the solution to
initial value problems on a numerical grid. Although initial value problems encompass more than just
differential equations in time, we use time as the independent variable. We also use several notations
for the derivative of f (t) : f ′(t), f (1)(t), d f (t)

dt , and ḟ , whichever is most convenient for the context.
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19.2 Reduction of Order
Many numerical methods for solving initial value problems are designed specifically to solve first-order
differential equations. To make these solvers useful for solving higher order differential equations, we
must often reduce the order of the differential equation to first order. To reduce the order of a differential
equation, consider a vector, S(t), which is the state of the system as a function of time. In general, the
state of a system is a collection of all the dependent variables that are relevant to the behavior of the
system. Recalling that the ODEs of interest in this book can be expressed as

f (n)(t) = F
(

t, f (t), f (1)(t), f (2)(t), f (3)(t), . . . , f (n−1)(t)
)

,

for initial value problems, it is useful to take the state to be

S(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f (t)
f (1)(t)
f (2)(t)
f (3)(t)
· · ·

f (n−1)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then the derivative of the state is

d S(t)

dt
=

⎡
⎢⎢⎢⎢⎢⎢⎣

f (1)(t)
f (2)(t)
f (3)(t)
f (4)(t)
· · ·

f (n)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

f (1)(t)
f (2)(t)
f (3)(t)
f (4)(t)
· · ·

F
(
t, f (t), f (1)(t), . . . , f (n−1)(t)

)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S2(t)
S3(t)
S4(t)
S5(t)
· · ·

F
(
t, S1(t), S2(t), . . . , Sn−1(t)

)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Si (t) is the i th element of S(t). With the state written in this way, d S(t)
dt can be written using

only S(t) (i.e., no f (t)) or its derivatives. In particular, d S(t)
dt = F(t, S(t)), where F is a function that

appropriately assembles the vector describing the derivative of the state. This equation is in the form of
a first-order differential equation in S. Essentially, what we have done is turn an nth order ODE into n
first order ODEs that are coupled together, meaning they share the same terms.

TRY IT! Reduce the second order pendulum equation to first order, where

S(t) =
[

Θ(t)
Θ̇(t)

]
.

Taking the derivative of S(t) and substituting gives the correct expression.

d S(t)

dt
=

[
S2(t)

− g
l S1(t)

]
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It happens that this ODE can be written in matrix form:

d S(t)

dt
=

[
0 1

− g
l 0

]
S(t)

ODEs that can be written in this way are said to be linear ODEs.

Although reducing the order of an ODE to first order results in an ODE with multiple variables, all the
derivatives are still taken with respect to the same independent variable, t . Therefore, the ordinariness
of the differential equation is retained.

It is worth noting that the state can hold multiple dependent variables and their derivatives as long
as the derivatives are with respect to the same independent variable.

TRY IT! A very simple model to describe the change in population of rabbits, r(t), and wolves,
w(t), might be

dr(t)

dt
= 4r(t) − 2w(t)

and
dw(t)

dt
= r(t) + w(t).

The first ODE says that at each time step, the rabbit population multiplies by 4, but each wolf eats
two of the rabbits. The second ODE says that at each time step, the population of wolves increases
by the number of rabbits and wolves in the system. Write this system of differential equations as
an equivalent differential equation in S(t) where

S(t) =
[

r(t)
w(t)

]
.

The following first-order ODE is equivalent to the pair of ODEs.

d S(t)

dt
=

[
4 −2
1 1

]
S(t).

19.3 The Euler Method for Solving ODEs
Let d S(t)

dt = F(t, S(t)) be an explicitly defined first order ODE. That is, F is a function that returns
the derivative, or change, of a state given a time and state value. Also, let t be a numerical grid of the
interval [t0, t f ] with spacing h. Without loss of generality, we assume that t0 = 0, and that t f = Nh
for some positive integer, N .
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The linear approximation of S(t) around t j at t j+1 is

S(t j+1) = S(t j ) + (t j+1 − t j )
d S(t j )

dt
,

which can also be written

S(t j+1) = S(t j ) + hF(t j , S(t j )).

This formula is called the Explicit Euler Formula, and it allows us to compute an approximation for
the state at S(t j+1) given the state at S(t j ). Starting from a given initial value of S0 = S(t0), we can
use this formula to integrate the states up to S(t f ); these S(t) values are then an approximation for
the solution of the differential equation. The Explicit Euler formula is the simplest and most intuitive
method for solving initial value problems. At any state (t j , S(t j )) it uses F at that state to “point” toward
the next state and then moves in that direction a distance of h. Although there are more sophisticated and
accurate methods for solving these problems, they all have the same fundamental structure. As such,
we enumerate explicitly the steps for solving an initial value problem using the Explicit Euler formula.

WHAT IS HAPPENING? Assume we are given a function F(t, S(t)) that computes d S(t)
dt , a

numerical grid, t , of the interval, [t0, t f ], and an initial state value S0 = S(t0). We can compute
S(t j ) for every t j in t using the following steps.

1. Store S0 = S(t0) in an array, S.
2. Compute S(t1) = S0 + hF(t0, S0).
3. Store S1 = S(t1) in S.
4. Compute S(t2) = S1 + hF(t1, S1).
5. Store S2 = S(t1) in S.
6. · · ·
7. Compute S(t f ) = S f −1 + hF(t f −1, S f −1).
8. Store S f = S(t f ) in S.
9. S is an approximation of the solution to the initial value problem.

When using a method with this structure, we say the method integrates the solution of the ODE.

TRY IT! The differential equation d f (t)
dt = e−t with initial condition f0 = −1 has the exact

solution f (t) = −e−t . Approximate the solution to this initial value problem between 0 and 1 in
increments of 0.1 using the Explicity Euler Formula. Plot the difference between the approximated
solution and the exact solution (Figure 19.2).
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FIGURE 19.2

Comparison of the approximate integration of the function df (t)
dt = e−t between 0 and 1 (dashed) and

the exact integration (solid) using Euler’s Explicit Formula.
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If we repeat the process for h = 0.01, we get a better approximation for the solution (Figure 19.3).

FIGURE 19.3

Comparison of the approximate integration of the function df (t)
dt = e−t between 0 and 1 (dashed) and

the exact integration (solid) for smaller step size, h.

The Explicit Euler Formula is called “explicit” because it only requires information at t j to compute
the state at t j+1. That is, S(t j+1) can be written explicitly in terms of values we have (i.e., t j and S(t j )).
The Implicit Euler Formula can be derived by taking the linear approximation of S(t) around t j+1
and computing it at t j :

S(t j+1) = S(t j ) + hF(t j+1, S(t j+1)).

This formula is peculiar because it requires that we know S(t j+1) to compute S(t j+1)! However, it
happens that sometimes we can use this formula to approximate the solution to initial value problems.
Before we give details on how to solve these problems using the Implicit Euler Formula, we give another
implicit formula called the Trapezoidal Formula, which is the average of the Explicit and Implicit
Euler Formulas:

S(t j+1) = S(t j ) + h

2
(F(t j , S(t j )) + F(t j+1, S(t j+1))).

To illustrate how to solve these implicit schemes, consider again the pendulum equation, which has
been reduced to first order.

d S(t)

dt
=

[
0 1

− g
l 0

]
S(t)
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For this equation,

F(t j , S(t j )) =
[

0 1
− g

l 0

]
S(t j ).

If we plug this expression into the Explicit Euler Formula, we get the following equation:

S(t j+1) = S(t j ) + h

[
0 1

− g
l 0

]
S(t j ) =

[
1 0
0 1

]
S(t j ) + h

[
0 1

− g
l 0

]
S(t j ) =

[
1 h

− gh
l 1

]
S(t j )

Similarly, we can plug the same expression into the Implicit Euler to get

[
1 −h
gh
l 1

]
S(t j+1) = S(t j ),

and into the Trapezoidal Formula to get

[
1 − h

2
gh
2l 1

]
S(t j+1) =

[
1 h

2
− gh

2l 1

]
S(t j ).

With some rearrangement, these equations become, respectively,

S(t j+1) =
[

1 −h
gh
l 1

]−1

S(t j ),

S(t j+1) =
[

1 − h
2

gh
2l 1

]−1 [
1 h

2
− gh

2l 1

]
S(t j ).

These equations allow us to solve the initial value problem, since at each state, S(t j ), we can compute
the next state at S(t j+1). In general, this is possible to do when an ODE is linear.

19.4 Numerical Error and Instability
There are two main issues to consider with regard to integration schemes for ODEs: accuracy and
stability. Accuracy refers to a scheme’s ability to get close to the exact solution, which is usually
unknown, as a function of the step size h. Previous chapters have referred to accuracy using the notation
O(h p). The same notation translates to solving ODEs. The stability of an integration scheme is its
ability to keep the error from growing as it integrates forward in time. If the error does not grow, then
the scheme is stable; otherwise it is unstable. Some integration schemes are stable for certain choices
of h and unstable for others; these integration schemes are also referred to as unstable.

To illustrate issues of stability, we numerically solve the pendulum equation using the Euler Explicit,
Euler Implicit, and Trapezoidal Formulas.
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TRY IT! Use the Euler Explicit, Euler Implicit, and Trapezoidal Formulas to solve the pendulum

equation over the time interval [0, 5] in increments of 0.1 and for an initial solution of S0 =
[

1
0

]
. For

the model parameters using
√

g
l = 4. Plot the approximate solution on a single graph (Figure 19.4).

FIGURE 19.4

Comparison of numerical solution to the pendulum problem. The exact solution is a pure cosine wave.
The Explicit Euler scheme is clearly unstable. The Implicit Euler scheme decays exponentially, which
is not correct. The Trapezoidal method captures the solution correctly, with a small phase shift as time
increases.
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19.5 Predictor-Corrector Methods
Given any time and state value, the function, F(t, S(t)), returns the change of state d S(t)

dt . Predictor-
corrector methods of solving initial value problems improve the approximation accuracy of non-
predictor-corrector methods by querying the F function several times at different locations (predictions),
and then using a weighted average of the results (corrections) to update the state.

The midpoint method method has a predictor step:

S

(
t j + h

2

)
= S(t j ) + h

2
F(t j , S(t j )),

which is the prediction of the solution value halfway between t j and t j+1.
It then computes the corrector step:

S(t j+1) = S(t j ) + hF

(
t j + h

2
, S

(
t j + h

2

))
,

which computes the solution at S(t j+1) from S(t j ) but using the derivative from S
(
t j + h

2

)
.

A classical method for integrating ODEs with a high order of accuracy is the Fourth Order Runge
Kutta (RK4) method. This method uses four predictor corrector steps called k1, k2, k3, and k4. A
weighted average of these predictions is used to produce the approximation of the solution. The formula
is as follows.

k1 = F(t j , S(t j ))

k2 = F

(
t j + h

2
, S(t j ) + 1

2
k1h

)

k3 = F

(
t j + h

2
, S(t j ) + 1

2
k2h

)

k4 = F(t j + h, S(t j ) + k3h)
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The correction step is then

S(t j+1) = S(t j ) + h

6

(
k1 + 2k2 + 2k3 + k4

)
.

As indicated by its name, the RK4 method is fourth-order accurate, or O(h4).

19.6 MATLAB® ODE Solvers
MATLAB has several built-in functions for solving initial value problems. These functions all have the
same basic construction.

CONSTRUCTION: Initial value problem solvers in MATLAB all have the same basic construc-

tion. Let F be a function handle to the function that computes d S(t)
dt = F(t, S(t)), t be an array

containing the endpoints of the interval of interest, [t0, tf], and S0 be an initial value for S.
The function F must have the form [dS] = F(t, S), although the name does not have to be
F. The input argument t is assumed to be a scalar, and the input argument S is assumed to be a
column vector the same size as S0.

If the function ode is an arbitrary ODE solver, it can be called using the following syntax:
[T,S]=ode(F, t, S0)
Here, T is a column vector of the integrated time values, and S is an array of the solution

approximations for each element of the state. S will have as many rows as the length of T, and as
many columns as the length of S0. Row j of S is the approximation of the solution, S(t j ). In other
words, S(j,:) is the approximation of solution at T(j).

WARNING! The input arguments for F must have both t and S, even if one of them is not used
to compute the derivative.

The most commonly used ODE solver is ode45. We illustrate the use of ode45 with two simple
examples and then a more interesting example.

EXAMPLE: Consider the ODE
d S(t)

dt
= cos (t)

for an initial value S0 = 0. The exact solution to this problem is S(t) = sin (t). Use ode45 to
approximate the solution to this initial value problem over the interval [0, π ]. Plot the approximate
solution versus the exact solution and the relative error over time.
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As can be seen from Figure 19.5, the difference between the approximate and exact solution to
this ODE is extremely small.

FIGURE 19.5

Left: Integration of dS(t)
dt = cos (t) with ode45. Right: Computation of the difference between the solution

of the integration by ode45 and the evaluation of the analytical solution to this ODE.

TIP! In the previous example, we used anonymous function handles to produce the input function
for ode45. It is useful to store more complicated input functions as m-files and create handles to
them using the @ symbol.
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EXAMPLE: Consider the ODE
d S(t)

dt
= −S(t),

with an initial value of S0 = 1. The exact solution to this problem is S(t) = e−t . Use ode45 to
approximate the solution to this initial value problem over the interval [0, 1]. Plot the approximate
solution versus the exact solution, and the relative error over time.

Figure 19.6 shows the corresponding numerical results. As in the previous example, the differ-
ence between the result of ode45 and the evaluation of the analytical solution by MATLAB is
very small in comparison to the value of the function.

FIGURE 19.6

Left: Integration of dS(t)
dt = −y (t) with ode45. Right: Computation of the difference between the solution

of the integration by ode45 and the evaluation of the analytical solution to this ODE.
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TRY IT! Let the state of a system be defined by S(t) =
[

x(t)
y(t)

]
, and let the evolution of the system

be defined by the ODE
d S(t)

dt
=

[
0 t2

−t 0

]
S(t).

Use ode45 to solve this ODE for the time interval [0, 10] with an initial value of S0 =
[

1
1

]
. Plot

the solution in (x(t), y(t)) (see Figure 19.7).

FIGURE 19.7

Solution to Toy ODE using ode45.
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Table 19.1 Description of MATLAB’s ODE Solvers

Solver Problem Type Order of Accuracy When to Use

ode45 Nonstiff Medium Most of the time.
This should be the first solver you try.

ode23 Nonstiff Low For problems with crude error tolerances or for
solving moderately stiff problems.

ode113 Nonstiff Low to high For problems with stringent error tolerances or for
solving computationally intensive problems.

ode15s Stiff Low to medium If ode45 is slow because the problem is stiff.
ode23s Stiff Low If using crude error tolerances to solve stiff

systems and the mass matrix is constant.
ode23t Moderately Stiff Low For moderately stiff problems if you need a solution

without numerical damping.
ode23tb Stiff Low If using crude error tolerances to solve stiff systems.

In practice, some ODEs have bad behavior known as stiffness. Loosely speaking, stiffness refers to
systems that can have very sharp changes in derivative. An example of a stiff system is a bouncing ball,
which suddenly changes directions when it hits the ground. Depending on the properties of the ODE you
are solving and the desired level of accuracy, you might need to use different solvers. Table 19.1 shows
some of MATLAB’s ODE solvers, their accuracy, and the stiffness conditions in which they can be used.

Summary
1. Ordinary differential equations (ODEs) are equations that relate a function to its derivatives, and

initial value problems are a specific kind of ODE solving problem.
2. Most initial value problems cannot be integrated explicitly and therefore require numerical solutions.
3. There are explicit, implicit, and predictor-corrector methods for numerically solving initial value

problems.
4. The accuracy of the scheme used depends on its order of approximation of the ODE.
5. The stability of the scheme used depends on the ODE, the scheme, and the choice of the integration

parameters.

Vocabulary
accuracy Midpoint Method solution
coupled nth order ODE stability
differential equation ODE state
Explicit Euler Formula ordinary differential equation Trapezoidal Formula
Fourth-Order Runge Kutta Method partial differential equation
general solution particular solution
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Implicit Euler Formula PDE
initial value problem predictor corrector schemes
linear ODE reduce the order

Functions and Operators
ode15s ode23t ode113
ode23 ode23tb
ode23s ode45

Problems
1. The logistics equation is a simple differential equation model that can be used to relate the

change in population dP/dt to the current population, P , given a growth rate, r , and a carrying
capacity, K . The logistics equation can be expressed by:

d P

dt
= r P

(
1 − P

K

)

Write a function with header [dP] = myLogisticsEq(t, P, r, K) that represents
the logistics equation. Note that this format allows myLogisticsEq to be used as an input
argument to ode45. You may assume that the arguments dP, t, P, r, and K are all scalars,
and dP is the value d P

dt given r, P, and K. Note that the input argument, t, is obligatory if
myLogisticsEq is to be used as an input argument to ode45, even though it is part of the
differential equation.

Note: The logistics equation has an analytic solution defined by:

P(t) = K P0ert

K + P0(ert − 1)

where P0 is the initial population. As an exercise, you should verify that this equation is a
solution to the logistics equation.

Test Cases:
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2a. The Lorenz attractor is a system of ordinary differential equations that was originally developed
to model convection currents in the atmosphere. The Lorenz equations can be written as:

dx

dt
= σ(y − x)

dy

dt
= x(ρ − z) − y

dz

dt
= xy − βz

where x, y, and z represent position in three dimensions and σ, ρ, and β are scalar param-
eters of the system. You can read more about the Lorenz attractor on Wikipedia: http://en.
wikipedia.org/wiki/Lorenz_equation.

Write a function with header [dS] = myLorenz(t,S,sigma,rho,beta), where t
is a scalar denoting time, S is a 3 × 1 array denoting the position (x, y, z), and sigma, rho,
and beta are strictly positive scalars representing σ, ρ, and β. The output argument dS should
be the same size as S.

Test Cases:

2b. Write a function with header [T, X, Y, Z] = myLorenzSolver(tSpan, s0,
sigma, rho, beta) that solves the Lorenz equations using ode45. The input argument
tSpan should be a 1 × 2 array of the form [t0, tf], where t0 is the initial time, and tf is
the final time of consideration. The input argument s0 should be a 3×1 array of the form [x0;
y0; z0], where (x0, y0, z0) represents an initial position. Finally, the input argumentssigma,
rho, andbeta are the scalar parameters σ, ρ, and β of the Lorenz system. The output arguments

http://en.wikipedia.org/wiki/Lorenz_equation
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T should be an array of times given as the output argument of ode45. The output arguments, X,
Y, and Z should be the numerically integrated solution produced from myLorenz and ode45.

Note: Your function, myLorenz.m, from problem 2a should be a subfunction of
myLorenzSolver. You do not need to submit myLorenz.m.

Test Cases:

Special Test Case: Go to http://www.mathworks.com/matlabcentral/fileexchange/31133-
plot3anianaglyph and download the file plot3AniAnaglyph.m from MATLAB Central
by clicking ‘download all’ in the upper left-hand corner. For future reference, this website is
a good repository of functions that other people have built. Who knows? You may find that
someone has already solved your problem for you!

http://www.mathworks.com/matlabcentral/fileexchange/31133-plot3anianaglyph
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Place the function into the working directory. You can call the help forplot3AniAnaglyph to
learn how it works. After running myLorenzSolver, the following line of code will produce
a 3D animation of the Lorenz attractor. Be sure to have those 3D glasses on!

3. Consider the following model of a mass-spring-damper (MSD) system in one dimension. In this
figure m denotes the mass of the block, c is called the damping coefficient, and k is the spring
stiffness. A damper is a mechanism that dissipates energy in the system by resisting velocity. The
MSD system is a simplistic model of several engineering applications such as shock observers
and structural systems.

The relationship between acceleration, velocity, and displacement can be expressed by the fol-
lowing mass-spring-damper (MSD) differential equation:

mẍ + cẋ + kx = 0

which can be rewritten:

ẍ = −(cẋ + kx)

m

Let the state of the system be denoted by the vector S = [x; v] where x is the displacement
of the mass from its resting configuration and v is its velocity. Rewrite the MSD equation as a
first-order differential equation in terms of the state, S. In other words, rewrite the MSD equation
as d S/dt = f (t, S).

Write a function with header [dS] = myMSD(t, S, m, c, k), where t is a scalar
denoting time, S is a 2 × 1 vector denoting the state of the MSD system, and m, c, and k are
the mass, damping, and stiffness coefficients of the MSD equation, respectively.

Test Cases:
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4. Write a function with header [T, S] = myForwardEuler(dS), tSpan, S0, where
dS is a handle to a function, f (t, S), describing a first-order differential equation, tSpan is an
array of times for which numerical solutions of the differential equation are desired, and S0 is
the initial condition of the system. Assume that the size of the state is one. The output argument,
T, should be a column vector such that T(i) = tSpan(i) for all i , and S should be the
integrated values of dS at times T. You should perform the integration using the Forward Euler
method, S(ti ) = S(ti−1) + (ti · ti−1)d S(ti−1, S(ti−1)).

Note: S(1) should equal S0.
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5. Write a function with header [T, S] = myRK4(dS, tSpan, S0), where the input and
output arguments are the same as in problem 4. The function myRK4 should numerically inte-
grate dS using the fourth-order Runge-Kutta method.

Test Cases:
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A
Accuracy

of forward difference formula, 247
in ODEs, 285

Ackermann function, 106
Addframe, 164
Addition

in binary, 125
in decimal, 124
of vectors, 179

Algebra, linear, 203
Analytics, 233
AND, 10

in binary, 125
Angles between vectors, 180
Animations, 164

definition, 164
snapshot of, 165

Anonymous function, 58
 declaration, 58
handles, 289

AnyEs function, 83
Apostrophe, 30
Approximations

of derivatives with Taylor series, 246
backward difference formula, 247–248
central difference formula, 247–248
forward difference formula, 247–248, 251
higher order, 252

linear, 228
numerical grid for, 247
Simpson’s Rule for, 269
with Taylor series, 226

Arguments
input, 43

to myAdder, 48, 140
running time and, 101

output, 43
assignment of, 50
multiple, 49

numeric (double), 49
return statement for, 49

Arithmetic operation, 4
Arithmetic operators, 4
Arrays

cell, 35
creation of, 40
double arrays and, 35–36
indexing, 36
struct arrays and, 35–36

char, 29
as input variable, 73
struct arrays and, 32

double, 20
cell arrays and, 35–36
class function for verification, 21
creating, 21
end point, 22
start point, 22
struct arrays and, 32

errors related to, 39
indexing, 24
one-dimensional, 25

of positive integers, 82
preallocating, 85
struct, 32, 39

cell arrays and, 35–36
char arrays and, 32
double arrays and, 32
elements of, 35
errors related to, 39
fields in, 32
indexing, 33
information in, 34
as input variable, 73

2D plotting, 151
value reassignment, 25

Assignment, 17
operator, 17, 48
of out values, 51

Index
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semicolon at, 45
of variables, 48

Augmented matrix, 184
Avifile function, 164
Aviobj, 164
Avoiding errors, 137

clean coding and, 138
program planning, 137
testing and, 138

Axis
equal command, 157
function, 161–162

display window size defined with, 158
limits changed with, 157

labels, 155
square command, 157
tight command, 157

B
Backslash operator, 187
Backward difference formula, 247

illustration of, 248
Bar function, 158–159
Bar3 function, 163
Base case, 95
Base10, 124

conversion to binary, 124
in IEEE754, 126–127
verifying, 124

Base-N, 123
Basic operations, 113
Basis function, 202
Bias, 126
Big-O notation, 113

complexity in, 115, 122
Fibonacci function in, 114

Binary, 123–124, 130–131
addition in, 125
AND and, 125
base10 conversion to, 124
IEEE754 compared with, 128
multiplication in, 125

NOT and, 125
OR and, 125
search, 121

Bisection method, 235
illustration of, 236

Bit
to characteristic, 131
definition, 124
to fraction, 131
operations, 113

Body of function, 43
Boole’s Rule, 276
Bottlenecks

definition, 120
starting at, 120

Boxplot function, 160
Braces, 35
Brackets, 21
Branches, function, 67
Branching statement, 67, 74
Break keyword, 84
Breakpoint

in debugging, 141
insertion of, 141

C
Calc string, 75
Calculator, MATLAB as, 4

arithmetic operation, 4
arithmetic operators, 4
digits settings, 6
execution, 5
factorial function, 7
format compact command, 8
help function, 7
infinity and, 8
order of operations, 5
pi, stored value of, 6
UP ARROW, 7

Calculus, multivariable, 204
Catch. See Try-catch statement
Caxis function, 163
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Cells
arrays, 35

creation of, 40
double arrays and, 35–36
indexing, 36
struct arrays and, 35–36

code, 59
function, 40
script files as, 59

Central difference formula, 247
illustration of, 248

Chaos Theory, 13
Char arrays, 29

as input variable, 73
struct arrays and, 32

Characteristic, 126
bits allocated to, 131

Chebyshev polynomials, 105
Class function, 29

for double array verification, 21
Clc, 59
Clean coding, error avoidance and, 138
Clear all, 38, 59
Clear function, 19
Close all, 59, 158
Code block, 68

under conditional statements, 70, 72–73
If Statement, 71

Code cells, 59
Code suppression, 45
Coding, error avoidance and, 138
Coefficients, 181, 215
Colon operators, 22
Color symbols, 153
Colormap function, 163
Column vectors, 179
Command

history window, 3
prompt, 3
unassigned, 20
window, 3

Comments
comment out, 46
definition, 46

in functions, 46
myAdder for, 46

Comparison operators, 9
Complex numbers, 178

notation to denote, 178
Complexity, 113

in Big-O notation, 115, 122
definition, 113
importance of, 116

Compose, functions, 49
Computer speeds, 88
Concatenation, 21
Condition number, 184
Conditional statements, 68

code block under, 70, 72–73
using logical operators, 69

Conquer. See Divide and conquer
Continue keyword, 84
Contour function, 162
Convergence, 234
Cos function, 52

noise in, 254
Coupled ODEs, 280
Cross product between vectors, 180
ctrl+c, 90
Cubic functions, 213
Cubic polynomials, 209, 213, 216
Cubic spline interpolation, 213, 221

illustration of, 213
interpl function for, 214
system of equations for, 216

Cumsum, 270
Cumtrapz, 270–271
Current directory, 3

window, 3
Cycloid, 167
Cylinder, script file for properties of, 58

D
Data structures, 20
Debugging, 141

breakpoint in, 141
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definition, 141
Decimal expansion, 123
Decimal system

addition in, 124
definition, 123
multiplication in, 124

Definite, 81
Derivatives

approximation of, with Taylor series, 246
backward difference formula, 247–248
central difference formula, 247–248
forward difference formula, 247–248, 251
higher order, 252

numerical computation of, 249, 251
Determinant

nonzero, 184
in square matrix, 183

Diff command, 249
Differential equations, 277

ordinary, 277
accuracy in, 285
coupled, 280
Euler method for solving, 277
Explicit Euler Formula, 286
Fourth Order Runge Kutta method,  

287, 298
general solution, 278–279
Implicit Euler Formula, 284
initial value, 279
integration in, 282
known values, 278–279
linear, 280
MATLAB solvers, 288
midpoint method, 287
nth order, 277
particular solution, 278–279
predictor-corrector methods, 287
reduction of order, 280
stability in, 285
state in, 280
stiffness of, 292
Trapezoidal Formula, 284

partial, 278
Digits settings, 6

Discrete representation of  
functions, 245

Display function, 45
Divide and conquer, 101

QuickSort, 104
pivot in, 104

Towers of Hanoi problem, 101
recursive solution to, 102
steps of, 102
subproblems in, 102

Double arrays, 20
cell arrays and, 35–36
class function for verification, 21
creating, 21
end point, 22
start point, 22
struct arrays and, 32

Double precision floats, 126
as default, 128

E
Editor

definition, 44–45
for functions, 44
path, MATLAB, 55

Element-by-element matrix  
multiplication, 27

Empty sets, 177
End statements of functions, 46
Eps function, 127, 133
Equilateral triangle, 169
Error

array-related, 39
avoiding, 137

clean coding and, 138
program planning, 137
testing and, 138

function
sprintf function and, 73
type checking and, 140

individual, 203
logic, 135

definition, 136
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myAdder, 49
numerical, 285
reading, 49
runtime, 135

examples, 136
struct array, 39
syntax

definition, 135
examples, 136

throwing, 135
tolerance of, 234
total squared, 203
types, 135
unavoidability of, 135

Errorbar function, 160
Estimation function, 202, 210

for force-displacement  
relationship, 202

parameters of, 202
Euler method for solving ODEs, 281

explicit, 282
implicit, 284
integration, 282
Trapezoidal Formula, 284

Excel, Microsoft. See .xls files
Execute, 5
Exp function, 57
Explicit Euler Formula, 282
Exponent, e, 126
Exponential time, 115

algorithms, for Fibonacci  
numbers, 116

scaling, 116

F
Factorial function, 7

erroneous, 136
using recursive functions, 96

Fclose function, 146
Fget1, 147

test.txt and, 148
Fibonacci function, 122

in Big-O notation, 114

Fibonacci numbers, 97
computing, 98
exponential time algorithm for, 116
iterative implementation for, 100
myIterFib function for, 100
for myRecFib, 99
polynomial time algorithm for, 116
recursion tree for, 98
recursive implementation of, 115
tic function for, 100
toc function for, 100

Fields, 32
Files

identifier, 146
.mat, 145

definition, 145
m-file, 47
script, 58

as cells, 59
for cylinder properties, 58
running, 58
for 2D plotting, 158
workspace, 59

test.avi, 165
test.txt

fget1 function and, 148
fprintf function and, 147

test.xls
xlsread function for, 150
xlswrite for, 149

.txt, 146

.xls, 148
Filterguitar command, 13
Floating point numbers, 126

bias in, 126
characteristic in, 126
definition, 126
double precision, 126

as default, 128
fraction in, 126
gaps in, 126
overflow, 127
sign indicator in, 126
single precision, 126
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IEEE754 standard, 126
underflow, 127

Fopen function, 146
permissions for, 147

Force-displacement relationship, 202
For-loops, 81

construction, 81
definition, 81
end labeling, 84
looping variable in, 86
nested, 85, 222
in ProfilerTest.m, 119

Formal logic, 11
Format compact command, 8
Fortnight, 11
Forward difference formula, 247, 251

accuracy of, 247
illustration of, 248

Fourth Order Runge Kutta (RK4)  
method, 287, 298

Fprintf function, 146
test.txt and, 147

Fraction, 126
bits allocated to, 131

Functions. See also specific functions
Ackermann, 106
anonymous, 58

declaration, 58
handles, 289

basics, 43
body of, 43
branches, 67
clear, 19
comments in, 46
complexity of, 113

in Big-O notation, 115
definition, 113
importance of, 116

composing, 49
definition, 43
discrete representation of, 245
editor for, 44
end statements of, 46
estimation, 202, 210

for force-displacement relationship, 202
parameters of, 202

expression of, with Taylor series, 225
factorial, 7

erroneous, 136
using recursive functions, 96

handles, 57
header, 44

construction, 44
of linspace functions, 44
of myDist2Points function, 84
of strcmp function, 44

input arguments, 43
interpolation, 211
iterative, 101
as keywords, 44
length, 22

for matrices, 22
m-file for, 47
nonexistence, 54
output arguments, 43

assignment of, 50
multiple, 50

overloading in MATLAB path, 54
overwriting, 19
parent, 54
saving while writing, 47
semicolon for code suppression  

in, 45
size, 22

for matrices, 22
subfunctions, 54

definition, 54
2D plotting of, 152–154

legend function for, 156–157
title and axis labels, 155

type definition, 43
of linspace functions, 44
of strcmp function, 44

workspace, 51
exercises in, 53
separate, 52

zero, 23, 233
Fzero, 234
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G
Gaps, 126
General solution, 278–279
Golden ratio, 96
Gradients, 54
Grid function, 161–162
Grid off command, 157
Grid on command, 157–158

H
Handles, function, 57

anonymous, 289
Header, function, 44

construction, 44
of myDist2Points function, 84

Helix, 161
Help function, 7, 47
Higher order derivatives, 252
Hist function, 160
Histograms, 93
Hold function, 161–162, 167

I
Identity matrix, 183
IEEE754, 131

base10 in, 126–127
binary compared with, 128
single precision standard, 126

IEEEBaby, 133
If Statement, 67

code block sections, 71
If-Else Statement, 67

extended syntax, 68
simple syntax, 67

Ill-conditioned matrices, 184
Implicit Euler Formula, 284
Indefinite loops, 87
Individual errors, 203
Infinite loops

definition, 89

while-loop for, 89
Infinity, 8
Initial value

ODE, 279
problem, 279

Inner matrix dimension, 182
Input arguments, 43

to myAdder, 48, 140
running time and, 101

Input variable
char array as, 73
struct array as, 73

Instability, 285
Integers, 178

notation to denote, 178
positive, 82, 130
sum of, 82

Integrals
MATLAB computation, 269
Riemann, 260

left, 262
Midpoint Rule in, 261
right, 262

Intermediate Value Theorem, 235
illustration of, 235

Interpl function, 212, 214
for cubic spline interpolation, 214

Interpolation, 211
cubic spline, 213

illustration of, 213
interpl function for, 214

function, 211
Lagrange polynomial, 216, 222
linear, 212
problem statement, 211

illustration of, 212
Intersect, 177
Interval, 259
Inverse of square matrix, 183
Invertible matrices, 183
Irrational numbers, 178

notation to denote, 178
Isa, 73
Isinf, 73
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Isnan, 73
IsOdd, 74
Isosurface, 163
Isreal, 73
Iterative functions, 101

K
Keywords

break, 84
continue, 84
definition, 44
functions as, 44

Known values, 278–279

L
L 2 norm, 179
Lagrange basis polynomials,  

216–217
finding, 217

Lagrange polynomial, 216–217
plotting, 218

Lagrange polynomial interpolation,  
216, 222

definition, 216–217
Language

strongly typed, 140
weakly typed, 140

Least squares regression
definition, 203
derivation

linear algebra, 203
multivariable calculus for, 204

example, 209
formula, 204
in MATLAB, 205

plotting, 205
problem statement, 202
pseudo-inverse in, 204
total squared error minimized in, 203

Left-divide operator, 187
Legend function, 161

for plots of functions, 156–157
Length function, 22

for matrices, 22
Line style symbols, 153
Linear algebra, 203
Linear approximation, 228
Linear combination, 181
Linear equations

for cubic spline interpolation, 216
definition, 185

Linear equations, systems of, 185
definition, 186
matrix form of, 186
solutions to, 187

illustration of process, 189
infinite number of, 188

Linear interpolation, 212
Linear ODEs, 280
Linear transformations, 185

definition, 185
domain in, 185
null space in, 185
range in, 185
zero vector in, 185

Linearly dependent, 181
Linearly independent, 181
Linspace function, 23, 38

function header of, 44
type definition of, 44

Local variables, 51
Log time, 115

algorithms, 116, 121
Log tricks, 207
Logic errors, 135

definition, 136
Logical expressions, 9

definition, 9
Logical operators, 10

conditional statements using, 69
truth table of, 10

Loglog function, 158–159, 167
Looping variables, 86
Lorenz Attractor, 13, 294
Lorenz command, 13
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M
Main branching statement, 72
Mass-spring-damper (MSD), 296
.mat files, 145

definition, 145
Mathematical expressions, 9

definition, 9
MATLAB

built-in arithmetic functions, 28, 119
as calculator, 4

arithmetic operation, 4
arithmetic operators, 4
digits settings, 6
execution, 5
factorial function, 7
format compact command, 8
help function, 7
infinity and, 8
order of operations, 5
pi, stored value of, 6
UP ARROW, 7

debugging, 141
breakpoint in, 141

editor, 44
environment, 4

getting started with, 3
errors from, reading, 49
function execution, 96
integral computation in, 269
least squares regression in, 205

plotting, 205
ODE solvers, 288
OOP in, 151
path, 54

editor, 55
function overloading in, 54

Profiler, 117
improved results for ProfilerTest.m, 120
overall results, 118
results for ProfilerTest.m, 118

variable assignment in, 48
visualization toolbox, 163
as weakly typed language, 140

Matrices, 182
augmented, 184
condition number of, 184
definition, 182
form of systems of linear equations, 186
identity, 183
ill-conditioned, 184
inner, dimension, 182
invertible, 183
length computation, 22
nonsingular, 183
nonzero determinant of, 184
outer, dimensions, 182
singular, 183
size computation, 22
square, 190

connectivity, 94
definition, 183
determinant in, 183
inverse of, 183

transpose, 28, 182
Matrix multiplication, 182
Max function, 91
MaxIter, 240
Mesh, 162
Meshgrid function, 162
m-file, 47
Microsoft Excel. See .xls files
Midpoint method, 287
Midpoint Rule, 261
Minus, set, 177
Modules, 137
Movies, 164

storage of, 164
MSD. See Mass-spring-damper
Multiplication

in binary, 125
in decimal, 124
element-by-element matrix, 27
matrix, 182
scalar, 180

Multivariable calculus, 204
myAckermann, 106
myAdder, 44
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comments added with, 46
errors, 49
help function on, 47
input arguments to, 48, 140
modification of, 140
original configuration, 52
out value assignment, 51
poor representation of, 47
resolving, 48
for sum computation, 49
verifying, 49

myBin2Dec, 131
myBinAdder, 131
myBisection, 236, 241
myBoundingArray, 65
myChebyshevPolyl, 105
myCheckerBoard, 61
myCircCalc, 75
myConnectivityMat2Struct, 94
myContourPlot, 173
myCoshApproximator, 230
myCubicSpline, 219–220
myCylinder, 63
myDCubicSpline, 221
myDist, 56
myDist2Points, 84
myDistXYZ, 56
myDonutArea, 64
myExpFit, 208
myExpRegression, 210
myFern, 171
myFibRec, 115
myFibTimer, 132
myFixedPoint, 240
myFlowCalculator, 199
myForwardEuler, 297
myFourierCoeff, 274
myFunPlotter, 169
myFunPlus, 57
myGreeting, 64
myInsideTriangle, 77
myInterpPlotter, 220
myIsoOrthogonal, 196
myIsSimilar, 197

myIterFib, 100
myLagrange, 222
myLetterGrader, 77
myLinRegression, 209
myLogisticsEq, 293
myLorenzSolver, 295
myLSParams, 208
myMakeLinInd, 197
myMakeSize10, 77
myMatMult, 91
myMonopolyDice, 92
myMultOperation, 77
myNearestNeighbor, 219
myNestedBranching, 70–71
myNewton function, 238–239
myNOdds, 63
myNthRoot, 240
myNukeAlarm, 78
myNumDiff, 255
myNumDiffwSmoothing, 257
myNumSols, 198
myParametricPlotter, 171
myPascalRow, 109
myPipeBuilder, 242
myPolyDerMat, 198
myPolygon, 168
myPolyInt, 273
myPolyPlotter, 169

test case for, 170
myQuinticSpline, 220
myRecDiet, 198
myRecFactorial, 96–97

unmodified, 100
myRecFib

Fibonacci numbers for, 99
modification for, 99
recursion tree for, 98

mySavingPlan, 91
mySierpinski, 169

test case for, 170
mySinh, 61
mySplitMatrix, 62
mySprialOnes, 110–111
mySum (A), 105
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mySurfacePlotter, 172–173
myThermoStat, 68
myTipCalc, 76
myTower, 102–103, 111
myTriangle, 62
myTrigOddEven, 91
myTrigSum, 50

N
Natural numbers, 178

notation to denote, 178
Nested for-loops, 85, 222
Nested if-statement, 70
Nested statement, 70
Newton step, 238

illustration of, 238
Newton-Raphson method, 237, 240–241
Noise

in cos function, 254
numerical differentiation of, 253

Nonlinear estimation functions, 207
Nonsingular matrices, 183
Norm of vectors, 179

L 2, 179
P-norm, 179

NOT, 10
in binary, 125

Notation
Big-O, 113

complexity in, 115
Fibonacci function in, 114

complex numbers, 178
integers, 178
irrational numbers, 178
natural numbers, 178
rational numbers, 178
real numbers, 178
scientific, 124
sets, 178
whole numbers, 178

N th order ODE, 277
N th order Taylor series, 226–227
Null space, 185

Numeric (double) output argument, 149
Numerical differentiation

with noise, 253
problem statement, 245

Numerical error, 285
Numerical grid

for approximation, 246
definition, 245
spacing, 245
step size, 245

Numerical integration
integral computation in  

MATLAB, 269
problem statement, 259
Riemann integral, 260

left, 262
Midpoint Rule in, 261
right, 262

Simpson’s Rule, 266
accounting procedure in, 267
accuracy of, 267
for approximation, 269
illustration of, 266

trapezoid rule, 263
double counting in, 264
illustration of, 263

O
Object choice, 107
Object Oriented Programming  

(OOP), 151
ODE. See Ordinary differential equations
Ode45 function, 289–290
One function, 23
One-dimensional arrays, 25

of positive integers, 82
OOP. See Object Oriented Programming
Operators

arithmetic, 4
assignment, 17, 48
backslash, 187
colon, 22
comparison, 9
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left-divide, 187
logical, 5

conditional statements using, 69
truth table of, 10

OR, 10
in binary, 125

Order of operations, 5, 11
Ordinary differential equations  

(ODE), 277
accuracy in, 285
coupled, 280
Fourth Order Runge Kutta method,  

287, 298
initial value, 279
known values, 278–279
linear, 280
MATLAB solvers, 288
midpoint method, 287
nth order, 277
predictor-corrector methods, 287

definition, 287
reduction of order, 280
solutions to

Euler method for solving, 281
Explicit Euler Formula, 282
general solution, 278–279
Implicit Euler Formula, 284
integration in, 282
particular solution, 278–279
Trapezoidal Formula, 284

stability in, 285
state in, 280
stiffness of, 292

Orthogonal vectors, 180
Out value, 51

myAdder, 51
Outer matrix dimensions, 182
Output arguments, 43

assignment of, 50
multiple, 49
numeric (double), 149
return statement for, 51

Overflow, 127
Overloading, function, 54

P
Parabolas, 154
Parameters of estimation function, 202
Parent function, 54
Partial differential equation (PDE), 278
Particular solution, 278–279
Pascal’s Triangle, 109
Path, MATLAB, 54

editor, 55
function overloading in, 54

PDE. See Partial differential equation
Pendulum system, 278–279, 286
Permissions, 146

for fopen function, 147
Person struct, 40
Pi, stored value of, 6
Pinv function, 192, 195, 206
Pipeline construction, 242
Pivot, 104
Plot function, 159, 167
Plot3 function, 161
Plotting

Lagrange polynomial, 218
least squares regression in MATLAB, 205
sin function, 227
3D, 161

of helix, 161
of surfaces, 162
vectors in, 162

2D, 151
arrays, 151
color symbols, 153
of functions, 152–157
line style symbols, 153
of parabolas, 154
script file for, 158
styles, 153
vectors in, 152

P-norm of vectors, 179
Polar function, 160
Polynomial time, 114

algorithms, 116
for Fibonacci numbers, 116
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Polynomials, Chebyshev, 105
Positive integers, 82, 130
Positive scalar, 199
Power supply station network, 199
Preallocation, element array, 85
Precision, 123
Predictor-corrector methods, 287

definition, 287
Prime numbers, 92
Profiler, 117

overall results, 118
results for ProfilerTest.m, 118

improved, 120
ProfilerTest.m, 117

for-loop in, 119
improved profiler results, 120
Profiler results for, 118
sum function in, 119
time breakdown of, 119

Program planning
error avoidance and, 137
modules in, 137

Pseudo-inverse, 204
Pure mathematics, variables in, 18

Q
Quad function, 271
Quadratic equation, 78
QuickSort, 104, 111

pivot in, 104
recursive implementation of, 104

R
Ramanujan, Srinivasa, 13
Randn function, 167
Random numbers, 167
Range, 185
Rational numbers, 178

notation to denote, 178
Real numbers, 178

notation to denote, 178

Realmax, 127
Realmin, 127
Recursion limit, 99
Recursion tree, 97

for Fibonacci numbers, 98
for myRecFib, 98

Recursive call, 95
factorial function using, 96

Recursive functions, 95
base case in, 95
definition, 95

Recursive implementation of Fibonacci numbers, 
115

Recursive step, 95
Reduction of order, 280
Rem (a,b) function, 89
Remainder function, 83
Representations, 124
Residuals, 203
Return statement, 51
Riemann integral, 260

left, 262
Midpoint Rule in, 261
right, 262

RK4 method. See Fourth Order Runge  
Kutta method

Roman numerals, 124
Root finding

bisection method, 235
illustration of, 236

Newton-Raphson method, 237, 240–241
problem statement, 233
tolerance in, 234

Row vector, 179
Running time, 101
Runtime errors, 135

examples, 136

S
Saving

functions, writing and, 47
shortcut for, 47
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Scalar, 180
multiplication, 180

Scatter function, 158–159
Scientific notation, 124
Script files, 58

as cells, 59
for cylinder properties, 58
running, 58
for 2D plotting, 158
workspace, 59

Semicolon, 20
at assignment statements, 45
for code suppression in functions, 45
purposes, 21

Semilogx function, 158–159, 167
Semilogy function, 159, 167
Semilogy.scatter function, 158
Sequence

definition, 225
infinite, 225

Series
definition, 225
infinite, 225
Taylor, 230, 258

approximations with, 226
backward difference formula, 247–248
central difference formula, 247–248
for derivative approximation, 246
forward difference formula, 247–248, 251
fourth order, 230
functions expressed with, 225
for higher order derivatives, 252

Sets, 177
definition, 177
empty, 177
minus, 177
notation to denote, 178
union of, 177

Sign indicator, 126
Simpson’s Rule, 266

accounting procedure in, 267
accuracy of, 267
for approximation, 269

illustration of, 266
Sin function, 28, 52

plotting, 227
primitive of, 271
tan function and, 96

Sind function, 13
Single precision floats, 126

IEEE754 standard, 126
Singular matrices, 183
Size function, 22

for matrices, 22
Solutions, 278–279

to ordinary differential equations
Euler method for, 281
general, 278–279
integration in, 282
particular, 278–279

to systems of linear equations, 187
illustration of process, 189
infinite number of, 188

Spacing, 245
Sprintf function, 31–32, 64, 168

for customized titles, 155–156
error function taking, 73
string creation, 31–32, 39

Sprintf type inputs, 32
Square matrix, 190

connectivity, 94
definition, 183
determinant in, 183
inverse of, 183

Stability, 285
State, 280
Stemplot function, 160
Step, 141

in, 141
size, 245

Stiffness, 292
Str2num, 39
Strcmp function, 39, 83

function header of, 44
type definition of, 44
vectorizing, 75
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Strings, 29
Strongly typed language, 140
Struct arrays, 32, 39

cell arrays and, 35–36
char arrays and, 32
double arrays and, 32
elements of, 35
errors related to, 39
fields in, 32
indexing, 33
information in, 34
as input variable, 73

Subfunctions, 54
definition, 54

Subinterval, 259
Subnormal numbers, 127

in double precision, 128
Subplot function, 158, 161
Subproblems, 102
Such that, 177
Sum

computation
of integers, 82
in myAdder, 49

function, 119
of squares

improper implementation, 86
proper implementation, 86

Surf function, 162, 172
Symbols

color, 153
line style, 153

Syntax, 135
errors

definition, 135
examples, 136

Systems of linear equations, 185
for cubic spline interpolation, 216
definition, 186
matrix form of, 186
solutions to, 187

illustration of process, 189
infinite number of, 188

T
Tally marks, 124
Tan function, 96
Taylor series, 230, 258

approximations with, 226
for derivative approximation, 246

backward difference formula,  
247–248

central difference formula,  
247–248

forward difference formula,  
247–248, 251 

higher order, 252
fourth order, 230
functions expressed with, 225

Test.avi, 165
Test.txt

fget1 function and, 148
fprintf function and, 147

Test.xls
xlsread function for, 150
xlswrite for, 149

Text files. See .txt files
3D plotting, 161

of helix, 161
of surfaces, 162
vectors in, 162

Throwing errors, 135
Tic function, 88, 132

for Fibonacci number run  
times, 100

Title, 168
function, 161
of plots of functions, 155
sprintf function for, 155–156

Toc function, 88, 132
for Fibonacci number run times, 100

Tol, 240–241
Tolerance, 234
Total squared error, 203
Towers of Hanoi problem, 101

recursive solution to, 102
steps of, 102
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subproblems in, 102
Transpose of matrix, 28, 182
Trapezoid rule, 263

double counting in, 264
illustration of, 263

Trapezoidal Formula, 284
Trapz function, 269–270
Travel command, 13
Truth table, 10

of logical operators, 10
XOR, 14

Try-catch statement, 139
construction of, 139
strategic use of, 140

2D plotting, 151
arrays, 151
color symbols, 153
of functions, 152–154

legend function for, 156–157
title and axis labels, 155

line style symbols, 153
of parabolas, 154
script file for, 158
styles, 154
vectors in, 152

.txt files, 146
Type checking, 140

definition, 140
error function and, 140

Type definition of function, 43
of linspace functions, 44
of strcmp function, 44

U
Unassigned command, 20
Uncommenting, 46
Underflow, 127
Union of sets, 177
UP ARROW, 7

V
Variables, 17

assignment of, 48
definition, 17
in for-loops, 86
local, 51
looping, 86
overwriting, 19
in programming and pure  

mathematics, 18
Vectorized, 28

with evenly spaced points, 168
Vectors, 179

addition of, 179
angles between, 180
column, 179
cross product between, 180
norm of, 179
orthogonal, 180
p-norm of, 179
row, 179
in 3D plotting, 162
in 2D plotting, 152
zero, 179

in linear transformations, 185
Visualization toolbox,  

MATLAB, 163

W
Weakly typed language, 140
While-loop, 87, 115, 148

construction, 87
for infinite loops, 89

Whole numbers, 178
notation to denote, 178

Workspace, 18
function, 51

exercises in, 53
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separate, 52
script files, 59
window, 3

X
Xlabel function, 161
.xls files, 148
xlsread function, 149

for test.xls, 150
xlswrite function, 148

for test.xls, 149

XOR, 10
truth table, 14

Y
Year, length of, 13
Ylabel function, 161

Z
Zero function, 23, 233
Zero vectors, 179

in linear transformations, 185


